zoukankan      html  css  js  c++  java
  • spark与mapreduce的最大区别和spark原理

    参考文档:https://files.cnblogs.com/files/han-guang-xue/spark1.pdf

    Spark的具体操作详见参考文档!!!(这个是重点)

    Mapreduce和spark是数据处理层两大核心,了解和学习大数据必须要重点掌握的环节,根据自己的经验和大家做一下知识的分享。

     

    首先了解一下Mapreduce,它最本质的两个过程就是Map和Reduce,Map的应用在于我们需要数据一对一的元素的映射转换,比如说进行截取,进行过滤,或者任何的转换操作,这些一对一的元素转换就称作是Map;Reduce主要就是元素的聚合,就是多个元素对一个元素的聚合,比如求Sum等,这就是Reduce。

    Mapreduce是Hadoop1.0的核心,Spark出现慢慢替代Mapreduce。那么为什么Mapreduce还在被使用呢?因为有很多现有的应用还依赖于它,它不是一个独立的存在,已经成为其他生态不可替代的部分,比如pig,hive等。

    尽管MapReduce极大的简化了大数据分析,但是随着大数据需求和使用模式的扩大,用户的需求也越来越多:

    1.    更复杂的多重处理需求(比如迭代计算, ML, Graph);

    2.    低延迟的交互式查询需求(比如ad-hoc query)

    而MapReduce计算模型的架构导致上述两类应用先天缓慢,用户迫切需要一种更快的计算模型,来补充MapReduce的先天不足。

        Spark的出现就弥补了这些不足,我们来了解一些Spark的优势:

    1.每一个作业独立调度,可以把所有的作业做一个图进行调度,各个作业之间相互依赖,在调度过程中一起调度,速度快。

    2.所有过程都基于内存,所以通常也将Spark称作是基于内存的迭代式运算框架。

    3.spark提供了更丰富的算子,让操作更方便。

    4.更容易的API:支持Python,Scala和Java

    其实spark里面也可以实现Mapreduce,但是这里它并不是算法,只是提供了map阶段和reduce阶段,但是在两个阶段提供了很多算法。如Map阶段的map, flatMap, filter, keyBy,Reduce阶段的reduceByKey, sortByKey, mean, gourpBy, sort等。

  • 相关阅读:
    mysql 导入excel 或 .csv
    导出Excel
    jQuery.ajax
    在web项目中配置log4j
    数据分析入门
    jdbc的配置(更新中)
    Maven中项目的启动
    Maven中的配置文件
    Maven的插件管理
    Maven的依赖管理
  • 原文地址:https://www.cnblogs.com/singleYao/p/13404439.html
Copyright © 2011-2022 走看看