传送门
大半年时间没练习,已经什么也不会了 ==
为了维护区间最大子区间和,容易想到线段树区间合并,需要维护包含左/右端点的最大子区间和。
至于环状结构,可以通过二选一来等价得到答案,因此还需要维护区间最小子区间和。
注意特判不能全选。
#include <algorithm>
#include <cstdio>
#include <iostream>
using namespace std;
const int maxn(1e5 + 10);
int a[maxn];
struct node {
// 左(右)子编号,区间和
int l, r, sum;
// 区间内的最小(大)子区间和
int mn, mx;
// 区间内包含左端的最小(大)子区间和
int lmn, lmx;
// 区间内包含右端的最小(大)子区间和
int rmn, rmx;
} tree[maxn << 2];
inline int ls(int cur) {
return cur << 1;
}
inline int rs(int cur) {
return cur << 1 xor 1;
}
void push_up(int cur) {
tree[cur].sum = tree[ls(cur)].sum + tree[rs(cur)].sum;
// 继承左子或右子拼接左子
tree[cur].lmn = min(tree[ls(cur)].lmn, tree[rs(cur)].lmn + tree[ls(cur)].sum);
tree[cur].lmx = max(tree[ls(cur)].lmx, tree[rs(cur)].lmx + tree[ls(cur)].sum);
// 继承右子或左子拼接右子
tree[cur].rmn = min(tree[rs(cur)].rmn, tree[ls(cur)].rmn + tree[rs(cur)].sum);
tree[cur].rmx = max(tree[rs(cur)].rmx, tree[ls(cur)].rmx + tree[rs(cur)].sum);
// 继承左右子或左右子拼接
tree[cur].mn = min(min(tree[ls(cur)].mn, tree[rs(cur)].mn), tree[ls(cur)].rmn + tree[rs(cur)].lmn);
tree[cur].mx = max(max(tree[ls(cur)].mx, tree[rs(cur)].mx), tree[ls(cur)].rmx + tree[rs(cur)].lmx);
}
void build(int cur, int l, int r) {
tree[cur].l = l;
tree[cur].r = r;
if (l == r) {
tree[cur].sum = tree[cur].mn = tree[cur].mx =
tree[cur].lmn = tree[cur].lmx = tree[cur].rmn = tree[cur].rmx = a[l];
return;
}
int mid = (l + r) >> 1;
build(ls(cur), l, mid);
build(rs(cur), mid + 1, r);
push_up(cur);
}
void update(int cur, int p, int v) {
if (tree[cur].l == p and tree[cur].r == p) {
tree[cur].sum = tree[cur].mn = tree[cur].mx =
tree[cur].lmn = tree[cur].lmx = tree[cur].rmn = tree[cur].rmx = v;
return;
}
int mid = (tree[cur].l + tree[cur].r) >> 1;
if (p <= mid) {
update(ls(cur), p, v);
} else {
update(rs(cur), p, v);
}
push_up(cur);
}
int query() {
int mx = max(tree[1].mx, tree[1].sum - tree[1].mn);
// 不能全选
return mx == tree[1].sum ? mx - tree[1].mn : mx;
}
int main() {
#ifdef ONLINE_JUDGE
#else
freopen("input.txt", "r", stdin);
#endif
int n, m, p, v;
scanf("%d", &n);
for (int i = 1; i <= n; ++i) {
scanf("%d", a + i);
}
build(1, 1, n);
scanf("%d", &m);
while (m--) {
scanf("%d%d", &p, &v);
update(1, p, v);
printf("%d
", query());
}
return 0;
}