zoukankan      html  css  js  c++  java
  • 图的算法框架

    -------------------siwuxie095

       

       

       

       

       

       

       

       

    图的算法框架

       

       

    图的算法可以写在函数中,也可以封装在类中,为了严谨起见

    和后续复用,这里统一将图的算法都封装在类中

       

       

    其实对于图的算法而言,通常会比较复杂,需要很多辅助数据

    结构,而且这些数据结构可能会成为类中的成员变量,这也是

    要将图的算法封装在类中的原因之一

       

       

    同时,这里也会将封装成的类都设置为类模板,这样,不管是

    稀疏图,还是稠密图,都可以传入算法中,从而形成模板类

       

       

       

       

       

    如:从文件中读取图的测试用例的算法

       

    文件 testG1.txt 的内容,如下:

       

       

       

    该文件可以分成两部分:

       

    1)第一行:(13,13),表示图中有 13 个顶点,13 条边

       

    2)其它行:每一行有两个数字,表示一条边。共 13 行,即有 13 条边

       

       

       

       

       

    程序:

       

    SparseGraph.h:

       

    #ifndef SPARSEGRAPH_H

    #define SPARSEGRAPH_H

       

    #include <iostream>

    #include <vector>

    #include <cassert>

    using namespace std;

       

       

       

    // 稀疏图 - 邻接表

    class SparseGraph

    {

       

    private:

       

    int n, m; //n m 分别表示顶点数和边数

    bool directed; //directed表示是有向图还是无向图

    vector<vector<int>> g; //g[i]里存储的就是和顶点i相邻的所有顶点

       

    public:

       

    SparseGraph(int n, bool directed)

    {

    //初始化时,有n个顶点,0条边

    this->n = n;

    this->m = 0;

    this->directed = directed;

    //g[i]初始化为空的vector

    for (int i = 0; i < n; i++)

    {

    g.push_back(vector<int>());

    }

    }

       

       

    ~SparseGraph()

    {

       

    }

       

       

    int V(){ return n; }

    int E(){ return m; }

       

       

    //在顶点v和顶点w之间建立一条边

    void addEdge(int v, int w)

    {

       

    assert(v >= 0 && v < n);

    assert(w >= 0 && w < n);

       

    g[v].push_back(w);

    //1)顶点v不等于顶点w,即 不是自环边

    //2)且不是有向图,即 是无向图

    if (v != w && !directed)

    {

    g[w].push_back(v);

    }

       

    m++;

    }

       

       

    //hasEdge()判断顶点v和顶点w之间是否有边

    //hasEdge()的时间复杂度:O(n)

    bool hasEdge(int v, int w)

    {

       

    assert(v >= 0 && v < n);

    assert(w >= 0 && w < n);

       

    for (int i = 0; i < g[v].size(); i++)

    {

    if (g[v][i] == w)

    {

    return true;

    }

    }

       

    return false;

    }

       

       

    void show()

    {

       

    for (int i = 0; i < n; i++)

    {

    cout << "vertex " << i << ": ";

    for (int j = 0; j < g[i].size(); j++)

    {

    cout << g[i][j] << " ";

    }

    cout << endl;

    }

    }

       

       

       

    //相邻点迭代器(相邻,即 adjacent

    //

    //使用迭代器可以隐藏迭代的过程,按照一定的

    //顺序访问一个容器中的所有元素

    class adjIterator

    {

    private:

       

    SparseGraph &G; //图的引用,即 要迭代的图

    int v; //顶点v

    int index; //相邻顶点的索引

       

    public:

       

    adjIterator(SparseGraph &graph, int v) : G(graph)

    {

    this->v = v;

    this->index = 0;

    }

       

       

    //要迭代的第一个元素

    int begin()

    {

    //因为有可能多次调用begin()

    //所以显式的将index设置为0

    index = 0;

    //如果g[v]size()不为0

    if (G.g[v].size())

    {

    return G.g[v][index];

    }

       

    return -1;

    }

       

       

    //要迭代的下一个元素

    int next()

    {

    index++;

    if (index < G.g[v].size())

    {

    return G.g[v][index];

    }

       

    return -1;

    }

       

       

    //判断迭代是否终止

    bool end()

    {

    return index >= G.g[v].size();

    }

    };

    };

       

       

    //事实上,平行边的问题,就是邻接表的一个缺点

    //

    //如果要在addEdge()中判断hasEdge(),因为hasEdge()O(n)的复

    //杂度,那么addEdge()也就变成O(n)的复杂度了

    //

    //由于在使用邻接表表示稀疏图时,取消平行边(即 addEdge()

    //中加上hasEdge()),相应的成本比较高

    //

    //所以,通常情况下,在addEdge()函数中就先不管平行边的问题,

    //也就是允许有平行边。如果真的要让图中没有平行边,就在所有

    //边都添加进来之后,再进行一次综合的处理,将平行边删除掉

       

    #endif

       

       

       

    DenseGraph.h:

       

    #ifndef DENSEGRAPH_H

    #define DENSEGRAPH_H

       

    #include <iostream>

    #include <vector>

    #include <cassert>

    using namespace std;

       

       

       

    // 稠密图 - 邻接矩阵

    class DenseGraph

    {

       

    private:

       

    int n, m; //n m 分别表示顶点数和边数

    bool directed; //directed表示是有向图还是无向图

    vector<vector<bool>> g; //二维矩阵,存放布尔值,表示是否有边

       

    public:

       

    DenseGraph(int n, bool directed)

    {

    //初始化时,有n个顶点,0条边

    this->n = n;

    this->m = 0;

    this->directed = directed;

    //二维矩阵:nn列,全部初始化为false

    for (int i = 0; i < n; i++)

    {

    g.push_back(vector<bool>(n, false));

    }

    }

       

       

    ~DenseGraph()

    {

       

    }

       

       

    int V(){ return n; }

    int E(){ return m; }

       

       

    //在顶点v和顶点w之间建立一条边

    void addEdge(int v, int w)

    {

       

    assert(v >= 0 && v < n);

    assert(w >= 0 && w < n);

       

    //如果顶点v和顶点w之间已经存在一条边,

    //则直接返回,即排除了平行边

    if (hasEdge(v, w))

    {

    return;

    }

       

    g[v][w] = true;

    //如果是无向图,则g[w][v]处也设为true(无向图沿主对角线对称)

    if (!directed)

    {

    g[w][v] = true;

    }

       

    m++;

    }

       

       

    //hasEdge()判断顶点v和顶点w之间是否有边

    //hasEdge()的时间复杂度:O(1)

    bool hasEdge(int v, int w)

    {

    assert(v >= 0 && v < n);

    assert(w >= 0 && w < n);

    return g[v][w];

    }

       

       

    void show()

    {

       

    for (int i = 0; i < n; i++)

    {

    for (int j = 0; j < n; j++)

    {

    cout << g[i][j] << " ";

    }

    cout << endl;

    }

    }

       

       

       

    //相邻点迭代器(相邻,即 adjacent

    class adjIterator

    {

    private:

       

    DenseGraph &G; //图的引用,即 要迭代的图

    int v; //顶点v

    int index; //相邻顶点的索引

       

    public:

       

    adjIterator(DenseGraph &graph, int v) : G(graph)

    {

    this->v = v;

    this->index = -1;

    }

       

       

    //要迭代的第一个元素

    int begin()

    {

    //找第一个为true的元素,即为要迭代的第一个元素

    index = -1;

    return next();

    }

       

       

    //要迭代的下一个元素

    int next()

    {

    for (index += 1; index < G.V(); index++)

    {

    if (G.g[v][index])

    {

    return index;

    }

    }

       

    return -1;

    }

       

       

    //判断迭代是否终止

    bool end()

    {

    return index >= G.V();

    }

    };

    };

       

       

    //addEdge()函数隐含着:当使用邻接矩阵表示稠密图时,已经

    //不自觉的将平行边给去掉了,即 在添加边时,如果发现已经

    //存在该边,就不做任何操作,直接返回即可

    //

    //事实上,这也是使用邻接矩阵的一个优势可以非常方便的处理

    //平行边的问题

    //

    //另外,由于使用的是邻接矩阵,可以非常快速的用O(1)的方式,

    //来判断顶点v和顶点w之间是否有边

       

    #endif

       

       

       

    ReadGraph.h:

       

    #ifndef READGRAPH_H

    #define READGRAPH_H

       

    #include <iostream>

    #include <string>

    #include <fstream>

    #include <sstream>

    #include <cassert>

    using namespace std;

       

       

       

    //从文件中读取图的测试用例

    template <typename Graph>

    class ReadGraph

    {

       

    public:

       

    ReadGraph(Graph &graph, const string &filename)

    {

       

    ifstream file(filename);

    string line; //一行一行的读取

    int V, E;

       

    assert(file.is_open());

       

    //读取file中的第一行到line

    assert(getline(file, line));

    //将字符串line放在stringstream

    stringstream ss(line);

    //通过stringstream解析出整型变量:顶点数和边数

    ss >> V >> E;

       

    //确保文件里的顶点数和图的构造函数中传入的顶点数一致

    assert(V == graph.V());

       

    //读取file中的其它行

    for (int i = 0; i < E; i++)

    {

       

    assert(getline(file, line));

    stringstream ss(line);

       

    int a, b;

    ss >> a >> b;

    assert(a >= 0 && a < V);

    assert(b >= 0 && b < V);

    graph.addEdge(a, b);

    }

    }

       

    };

       

       

    #endif

       

       

       

    main.cpp:

       

    #include "SparseGraph.h"

    #include "DenseGraph.h"

    #include "ReadGraph.h"

    #include <iostream>

    using namespace std;

       

       

       

    int main()

    {

       

    string filename = "testG1.txt";

       

    SparseGraph g1(13, false);

    ReadGraph<SparseGraph> readGraph1(g1, filename);

    g1.show();

       

    cout << endl;

       

    DenseGraph g2(13, false);

    ReadGraph<DenseGraph> readGraph2(g2, filename);

    g2.show();

       

    system("pause");

    return 0;

    }

       

       

       

       

       

       

       

       

       

       

    【made by siwuxie095】

  • 相关阅读:
    注意:开发环境不同,启动代码不同…
    6410在rvds下编译启动代码报错分析
    S3C6410的启动代码分析&nbsp;一
    s3c6410开发板LED驱动程序设计详细…
    季逸超:90后IT少年的“盖茨梦”
    我的博客今天0岁52天了,我领取了…
    在linux中获取错误返回信息&nbsp;&amp;…
    各种居中对齐
    文本对齐方式
    素描人像
  • 原文地址:https://www.cnblogs.com/siwuxie095/p/7113652.html
Copyright © 2011-2022 走看看