zoukankan      html  css  js  c++  java
  • Linux DTS(Device Tree Source)设备树详解之二(dts匹配及发挥作用的流程篇)【转】

    转自:https://blog.csdn.net/radianceblau/article/details/74722395

    版权声明:本文为博主原创文章,未经博主允许不得转载。如本文对您有帮助,欢迎点赞评论。 https://blog.csdn.net/RadianceBlau/article/details/74722395
    本系列导航:

    Linux DTS(Device Tree Source)设备树详解之一(背景基础知识篇)

    Linux DTS(Device Tree Source)设备树详解之二(dts匹配及发挥作用的流程篇)

    Linux DTS(Device Tree Source)设备树详解之三(高通MSM8953实例分析篇)


    有上一篇文章,我们了解了dts的背景知识和相关基础,这次我们对应实际设备进行一下相关分析。

    DTS设备树的匹配过程

    一个dts文件确定一个项目,多个项目可以包含同一个dtsi文件。找到该项目对应的dts文件即找到了该设备树的根节点。

    kernelarcharmootdtsqcomsdm630-mtp.dts

    /* Copyright (c) 2017, The Linux Foundation. All rights reserved.
    *
    * This program is free software; you can redistribute it and/or modify
    * it under the terms of the GNU General Public License version 2 and
    * only version 2 as published by the Free Software Foundation.
    *
    * This program is distributed in the hope that it will be useful,
    * but WITHOUT ANY WARRANTY; without even the implied warranty of
    * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    * GNU General Public License for more details.
    */


    /dts-v1/;

    #include "sdm630.dtsi"
    #include "sdm630-mtp.dtsi"
    //#include "sdm660-external-codec.dtsi"
    #include "sdm660-internal-codec.dtsi"
    #include "synaptics-dsx-i2c.dtsi"


    / {
    model = "Qualcomm Technologies, Inc. SDM 630 PM660 + PM660L MTP";
    compatible = "qcom,sdm630-mtp", "qcom,sdm630", "qcom,mtp";
    qcom,board-id = <8 0>;
    qcom,pmic-id = <0x0001001b 0x0101011a 0x0 0x0>,
    <0x0001001b 0x0201011a 0x0 0x0>;
    };

    &tavil_snd {
    qcom,msm-mbhc-moist-cfg = <0>, <0>, <3>;
    };
    当然devicetree的根节点也是需要和板子进行匹配的,这个匹配信息存放在sbl(second boot loader)中,对应dts文件中描述的board-id(上面代码中的qcom,board-id属性),通过共享内存传递给bootloader,由bootloader将此board-id匹配dts文件(devicetree的根节点文件),将由dtc编译后的dts文件(dtb文件)加载到内存,然后在kernel中展开dts树,并且挂载dts树上的所有设备。

    (ps:cat /proc/cmdline 查看cmdline)

    Dts中相关符号的含义

    /        根节点

    @     如果设备有地址,则由此符号指定

    &     引用节点

    :        冒号前的label是为了方便引用给节点起的别名,此label一般使用为&label

    ,        属性名称中可以包含逗号。如compatible属性的名字 组成方式为"[manufacturer], [model]",加入厂商名是为了避免重名。自定义属性名中通常也要有厂商名,并以逗号分隔。

    # #并不表示注释。如 #address-cells ,#size-cells 用来决定reg属性的格式。

            空属性并不一定表示没有赋值。如 interrupt-controller 一个空属性用来声明这个node接收中断信号

    数据类型

    “”     引号中的为字符串,字符串数组:”strint1”,”string2”,”string3”

    < >    尖括号中的为32位整形数字,整形数组<12 3 4>

    [ ]      方括号中的为32位十六进制数,十六机制数据[0x11 0x12 0x13]  其中0x可省略

    构成节点名的有效字符:

    0-9 a-z A-Z , . _ + -
    构成属性名的有效字符:

    0-9 a-z A-Z , . _ + ? #

    DTS中几个难理解的属性的解释

    a. 地址

    设备的地址特性根据一下几个属性来控制:

    reg
    #address-cells
    #size-cells
    reg意为region,区域。格式为:

    reg = <address1length1 [address2 length2] [address3 length3]>;

    父类的address-cells和size-cells决定了子类的相关属性要包含多少个cell,如果子节点有特殊需求的话,可以自己再定义,这样就可以摆脱父节点的控制。
    address-cells决定了address1/2/3包含几个cell,size-cells决定了length1/2/3包含了几个cell。本地模块例如:

    spi@10115000{
    compatible = "arm,pl022";
    reg = <0x10115000 0x1000 >;
    };
    位于0x10115000的SPI设备申请地址空间,起始地址为0x10115000,长度为0x1000,即属于这个SPI设备的地址范围是0x10115000~0x10116000。

    实际应用中,有另外一种情况,就是通过外部芯片片选激活模块。例如,挂载在外部总线上,需要通过片选线工作的一些模块:

    external-bus{
    #address-cells = <2>
    #size-cells = <1>;

    ethernet@0,0 {
    compatible = "smc,smc91c111";
    reg = <0 0 0x1000>;
    };

    i2c@1,0 {
    compatible ="acme,a1234-i2c-bus";
    #address-cells = <1>;
    #size-cells = <0>;
    reg = <1 0 0x1000>;
    rtc@58 {
    compatible ="maxim,ds1338";
    reg = <58>;
    };
    };

    flash@2,0 {
    compatible ="samsung,k8f1315ebm", "cfi-flash";
    reg = <2 0 0x4000000>;
    };
    };
    external-bus使用两个cell来描述地址,一个是片选序号,另一个是片选序号上的偏移量。而地址空间长度依然用一个cell来描述。所以以上的子设备们都需要3个cell来描述地址空间属性——片选、偏移量、地址长度。在上个例子中,有一个例外,就是i2c控制器模块下的rtc模块。因为I2C设备只是被分配在一个地址上,不需要其他任何空间,所以只需要一个address的cell就可以描述完整,不需要size-cells。

    当需要描述的设备不是本地设备时,就需要描述一个从设备地址空间到CPU地址空间的映射关系,这里就需要用到ranges属性。还是以上边的external-bus举例:

    #address-cells= <1>;
    #size-cells= <1>;
    ...
    external-bus{
    #address-cells = <2>
    #size-cells = <1>;
    ranges = <0 0 0x10100000 0x10000 // Chipselect 1,Ethernet
    1 0 0x10160000 0x10000 // Chipselect 2, i2c controller
    2 0 0x30000000 0x1000000>; // Chipselect 3, NOR Flash
    };
    ranges属性为一个地址转换表。表中的每一行都包含了子地址、父地址、在自地址空间内的区域大小。他们的大小(包含的cell)分别由子节点的address-cells的值、父节点的address-cells的值和子节点的size-cells来决定。以第一行为例:

    ·        0 0 两个cell,由子节点external-bus的address-cells=<2>决定;

    ·        0x10100000 一个cell,由父节点的address-cells=<1>决定;

    ·        0x10000 一个cell,由子节点external-bus的size-cells=<1>决定。
    最终第一行说明的意思就是:片选0,偏移0(选中了网卡),被映射到CPU地址空间的0x10100000~0x10110000中,地址长度为0x10000。

    b. 中断

    描述中断连接需要四个属性:
    1. interrupt-controller 一个空属性用来声明这个node接收中断信号;
    2. #interrupt-cells 这是中断控制器节点的属性,用来标识这个控制器需要几个单位做中断描述符;
    3. interrupt-parent 标识此设备节点属于哪一个中断控制器,如果没有设置这个属性,会自动依附父节点的;
    4. interrupts 一个中断标识符列表,表示每一个中断输出信号。

    如果有两个,第一个是中断号,第二个是中断类型,如高电平、低电平、边缘触发等触发特性。对于给定的中断控制器,应该仔细阅读相关文档来确定其中断标识该如何解析。一般如下:

    二个cell的情况

    第一个值: 该中断位于他的中断控制器的索引;

    第二个值:触发的type

    固定的取值如下:

            1 = low-to-high edge triggered
            2 = high-to-low edge triggered
            4 = active high level-sensitive
            8 = active low level-sensitive

    三个cell的情况

    第一个值:中断号

    第二个值:触发的类型

    第三个值:优先级,0级是最高的,7级是最低的;其中0级的中断系统当做 FIQ处理。


    c. 其他

    除了以上规则外,也可以自己加一些自定义的属性和子节点,但是一定要符合以下的几个规则:

    1.    新的设备属性一定要以厂家名字做前缀,这样就可以避免他们会和当前的标准属性存在命名冲突问题;

    2.    新加的属性具体含义以及子节点必须加以文档描述,这样设备驱动开发者就知道怎么解释这些数据了。描述文档中必须特别说明compatible的value的意义,应该有什么属性,可以有哪个(些)子节点,以及这代表了什么设备。每个独立的compatible都应该由单独的解释。

    新添加的这些要发送到devicetree-discuss@lists.ozlabs.org邮件列表中进行review,并且检查是否会在将来引发其他的问题。

    DTS设备树描述文件中什么代表总线,什么代表设备

    一个含有compatible属性的节点就是一个设备。包含一组设备节点的父节点即为总线。

    由DTS到device_register的过程

    dts描述的设备树是如何通过register_device进行设备挂载的呢?我们来进行一下代码分析

     在arch/arm/mach-******/******.c找到DT_MACHINE_START 和 MACHINE_END 宏, 如下:

    DT_MACHINE_START(******_DT, "************* SoC (Flattened DeviceTree)")
    .atag_offset = 0x100,
    .dt_compat =******_dt_compat, // 匹配dts
    .map_io =******_map_io, // 板级地址内存映射, linux mmu
    .init_irq =irqchip_init, // 板级中断初始化.
    .init_time =******_timer_and_clk_init, // 板级时钟初始化,如ahb,apb等
    .init_machine = ******_dt_init, // 这里是解析dts文件入口.
    .restart =******_restart, // 重启, 看门狗寄存器相关可以在这里设置
    MACHINE_END
    其中.dt_compat    = ******_dt_compat 这个结构体是匹配是哪个dts文件, 如:
    static const char * const ******_dt_compat[] = {
    "******,******-soc",
    NULL
    };
    这个"******,******-soc" 字符串可以在我们的dts的根节点下可以找到.

    好了, 我们来看看init_machine   = ******_dt_init 这个回调函数.
    1. arch/arm/mach-******/******.c : void __init ******_dt_init(void)
        ******_dt_init(void) --> of_platform_populate(NULL,of_default_bus_match_table, NULL, NULL);
        of_default_bus_match_table 这个是structof_device_id的全局变量.
    const struct of_device_id of_default_bus_match_table[] = {
    { .compatible = "simple-bus",},
    #ifdef CONFIG_ARM_AMBA
    { .compatible = "arm,amba-bus",},
    #endif /* CONFIG_ARM_AMBA */
    {} /* Empty terminated list */
    };
     我们设计dts时, 把一些需要指定寄存器基地址的设备放到以compatible = "simple-bus"为匹配项的设备节点下. 下面会有介绍为什么.

    2. drivers/of/platform.c : int of_platform_populate(...)
        of_platform_populate(...) --> of_platform_bus_create(...)
        // 在这之前, 会有of_get_property(bus,"compatible", NULL) 
        // 检查是否有compatible, 如果没有, 返回, 继续下一个, 也就是说没有compatible, 这个设备不会被注册
    for_each_child_of_node(root, child) {
    printk("[%s %s %d]child->name = %s, child->full_name = %s ", __FILE__, __func__,__LINE__, child->name, child->full_name);
    rc = of_platform_bus_create(child,matches, lookup, parent, true);
    if (rc)
    break;
    }
        论询dts根节点下的子设备, 每个子设备都要of_platform_bus_create(...);
        全部完成后, 通过 of_node_put(root);释放根节点, 因为已经处理完毕;

    3. drivers/of/platform.c : of_platform_bus_create(bus, ...)
      
    dev = of_platform_device_create_pdata(bus, bus_id,platform_data, parent); // 我们跳到 3-1步去运行
    if (!dev || !of_match_node(matches, bus)) // 就是匹配
    // dt_compat = ******_dt_compat, 也就是 compatible = "simple-bus",
    // 如果匹配成功, 以本节点为父节点, 继续轮询本节点下的所有子节点
    return 0;

    for_each_child_of_node(bus, child) {
    pr_debug(" create child:%s ", child->full_name);
    rc = of_platform_bus_create(child,matches, lookup, &dev->dev, strict); // dev->dev以本节点为父节点, 我们跳到 3-2-1步去运行
    if (rc) {
    of_node_put(child);
    break;
    }
    }
    3-1. drivers/of/platform.c : of_platform_device_create_pdata(...)
    if (!of_device_is_available(np)) // 查看节点是否有效, 如果节点有'status'属性, 必须是okay或者是ok, 才是有效, 没有'status'属性, 也有效
    return NULL;

    dev = of_device_alloc(np, bus_id, parent); // alloc设备, 设备初始化. 返回dev, 所有的设备都可认为是platform_device, 跳到3-1-1看看函数做了什么事情
    if (!dev)
    return NULL;

    #if defined(CONFIG_MICROBLAZE)
    dev->archdata.dma_mask = 0xffffffffUL;
    #endif
    dev->dev.coherent_dma_mask =DMA_BIT_MASK(32); // dev->dev 是 struct device. 继续初始化
    dev->dev.bus =&platform_bus_type; //
    dev->dev.platform_data =platform_data;

    printk("[%s %s %d] of_device_add(device register)np->name = %s ", __FILE__, __func__, __LINE__, np->name);
    if (of_device_add(dev) != 0){ // 注册device,of_device_add(...) --> device_add(...) // This is part 2 ofdevice_register()
    platform_device_put(dev);
    return NULL;
    }
    3-1-1. drivers/of/platform.c : of_device_alloc(...)
        1) alloc platform_device *dev
        2) 如果有reg和interrupts的相关属性, 运行of_address_to_resource 和of_irq_to_resource_table, 加入到dev->resource
    dev->num_resources = num_reg +num_irq;
    dev->resource = res;
    for (i = 0; i < num_reg; i++, res++) {
    rc = of_address_to_resource(np,i, res);
    /*printk("[%s %s %d] res->name = %s, res->start = 0x%X, res->end =0x%X ", __FILE__, __func__, __LINE__, res->name, res->start,res->end); */
    WARN_ON(rc);
    }
    WARN_ON(of_irq_to_resource_table(np, res,num_irq) != num_irq);
        3) dev->dev.of_node = of_node_get(np);  
            // 这个node属性里有compatible属性, 这个属性从dts来, 后续driver匹配device时, 就是通过这一属性进匹配 
            // 我们可以通过添加下面一句话来查看compatible.
            // printk("[%s %s %d]bus->name = %s, of_get_property(...) = %s ", __FILE__, __func__,__LINE__, np->name, (char*)of_get_property(np, "compatible",NULL));
            // node 再给dev, 后续给驱动注册使用.
        4) 运行 of_device_make_bus_id 设定device的名字, 如: soc.2 或 ac000000.serial 等

    3-2. drivers/of/platform.c : 
        以 compatible = "simple-bus"的节点的子节点都会以这个节点作为父节点在这步注册设备.
        至此从dts文件的解析到最终调用of_device_add进行设备注册的过程就比较清晰了。


    查看挂载上的所有设备

    cd /sys/devices/ 查看注册成功的设备  对应devicetree中的设备描述节点^-^


    声明:本文中部分内容参考 

    http://elinux.org/Device_Tree_Usage

    https://www.devicetree.org/specifications/

    http://blog.csdn.NET/eastonwoo/article/details/51498647


    http://blog.csdn.net/airk000/article/details/21345159


    http://elinux.org/Device_Tree_Usage
    ---------------------
    作者:radianceblau
    来源:CSDN
    原文:https://blog.csdn.net/radianceblau/article/details/74722395
    版权声明:本文为博主原创文章,转载请附上博文链接!

  • 相关阅读:
    Eureka实现注册与发现
    SpringBoot之彩色输出
    SpringBoot之简单日志配置
    SpringBoot之文件读取
    springboot之banner
    记一下一个我误解的小特性
    spring4新特性-泛型依赖注入
    boot之mybatis
    springmvc之单元测试(MockMvc)-独立测试
    git ignore
  • 原文地址:https://www.cnblogs.com/sky-heaven/p/10419668.html
Copyright © 2011-2022 走看看