zoukankan      html  css  js  c++  java
  • [scheduler]八. CFS调度算法怎么计算进程(PELT算法)/cpu/系统 利用率的【转】

    转自:https://blog.csdn.net/wukongmingjing/article/details/82531950?utm_medium=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-4.channel_param&depth_1-utm_source=distribute.pc_relevant.none-task-blog-BlogCommendFromMachineLearnPai2-4.channel_param

    Scheduler里面这个负载的概念可能被误解为cpu占用率,但是在调度里面这个有比较大的偏差。scheduler不使用cpu占用率来评估负载,而是使用runnable_time_avg,即平均运行时间来评估负载。sheduler也分了几个层级来计算负载:

    • entity级负载计算:update_load_avg()
    • cpu级负载计算:update_cpu_load_active()
    • 系统级负载计算:calc_global_load_tick()

    第一个是调度实体的load,即sched_entity的load,根据PELT算法实现的,算法逻辑如下:
    这里写图片描述

    PELT(Per Entity Load Tracing)算法概述
    从上面示意图可以看到,task runtime是delta=delta1+delta2+delta3之和

    • delta数值依赖真实task的运行时间,是总的运行时间
    • last update time是task load的上次更新的最后时间(第一个红色箭头)
    • now是task load更新的当前时间(第二个红色箭头)
    • 1ms表示1024us的颗粒度,由于kernel对于除法效率较低和不能使用小数位,所以1ms直接转化为1024us,好做乘法和位移运算,真的很巧妙

    示意图的目的就是追踪三个时间段(phase1/phase2/phase3)的load,来计算now时刻的load,周而复始.
    ###PELT算法
    #####Phase1阶段怎么计算load

    • 计算delta1的period:
      delta1 = 1024 - Period_contrib1 (< 1024us)
    • load_sum被刻度化通过当前cpu频率和se的权重:
      delta1 = delta1 * scale_freq
      load_sum += weight*delta1
    • load_util被cpu的capacity刻度化
      util_sum += scale_cpu *delta1;

    #####Phase2阶段怎么计算load的:

    • 计算delta2的period
      periods = delta2 / 1024(即存在有多少个1ms)
    • 衰减phase1的load
      load_sum += decay_load(load_sum , periods + 1)
      util_sum += decay_load(util_sum , periods + 1)
    • 衰减阶段phase2的load
      load_sum += __contrib(periods) * scale_freq
      util_sum += __contrib(periods) * scale_freq * scale_cpu

    #####Phase3计算怎么计算load:

    • 计算剩余周期(<1ms,<1024us)
      period_contrid2 = delta3 % 1024
    • load_sum被当前权重和频率刻度化
      load_sum += weight * scale_freq * period_contrib2
    • util_sum被当前频率和当前cpu capacity刻度化
      util_sum += scale_cpu * scale_freq * period_contrib2

    上面是这个算法的精髓以及思路,下面讲解decay_load和__contrib怎么计算的
    ######decay_load:
    对于每一个period(大小为LOAD_AVG_PERIOD=32ms),这个load将衰减0.5,因此根据当前period,load被衰减方式如下:

    • load = (load >> (n/period)) * y^(n%period)
    • 并且y^(n%period) * (2^32 - 1) 可以看成runnable_avg_yN_inv[n]的数值

    在kernel中查表即可:

    /* Precomputed fixed inverse multiplies for multiplication by y^n */  
    static const u32 runnable_avg_yN_inv[] = {  
        0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,  
        0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,  
        0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,  
        0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,  
        0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,  
        0x85aac367, 0x82cd8698,  
    };  
    #define LOAD_AVG_PERIOD 32  
    #define LOAD_AVG_MAX 47742 /* maximum possible load avg */  
    #define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */  
    

    其实现代码如下:

    /* 
     * Approximate: 
     *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period) 
     */  
    static __always_inline u64 decay_load(u64 val, u64 n)  
    {  
        unsigned int local_n;  
      
        if (!n)  
            return val;  
        else if (unlikely(n > LOAD_AVG_PERIOD * 63))  
            return 0;  
      
        /* after bounds checking we can collapse to 32-bit */  
        local_n = n;  
      
        /* 
         * As y^PERIOD = 1/2, we can combine 
         *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 
         * With a look-up table which covers y^n (n<PERIOD) 
         * 
         * To achieve constant time decay_load. 
         */  /*LOAD_AVG_PERIOD = 32*/
        if (unlikely(local_n >= LOAD_AVG_PERIOD)) {  
            val >>= local_n / LOAD_AVG_PERIOD;  
            local_n %= LOAD_AVG_PERIOD;  
        }  
        /*正好符合:load = (load >> (n/period)) * y^(n%period)计算方式*/
        val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);  
        return val;  
    }  
    
    __contrib:
    • if period <= LOAD_AVG_PERIOD(32ms, 32 * 1024us)
      load = 1024 + 1024y + 1024y^2 + ……+1024*y^period
    • if period > LOAD_AVG_MAX_N(345ms)
      load = LOAD_AVG_MAX (47742)
    • if period∈(32, 345],即每个LOAD_AVG_PERIOD周期衰减累加
      do
      load /=2
      load += 1024 + 1024y + 1024y^2 +…+ 1024*y^LOAD_AVG_PERIOD
      n -= period
      while(n > LOAD_AVG_PERIOD)
    • 1024 + 1024y + 1024y^2 +…+ 1024*y^32=runnable_avg_yN_sum[32]
      decay_load()只是计算y^n,而__contrib是计算一个对比队列的和:y + y^2 + y^3 … + y^n.计算方式如下:
      runnable_avg_yN_sum[]数组是使用查表法来计算n=32位内的等比队列求和:
      runnable_avg_yN_sum[1] = y^1 * 1024 = 0.978520621 * 1024 = 1002
      runnable_avg_yN_sum[2] = (y^1 + y^2) * 1024 = 1982

      runnable_avg_yN_sum[32] = (y^1 + y^2 … + y^32) * 1024 = 23371

    实现代码和查表数据如下:

    static u32 __compute_runnable_contrib(u64 n)  
    {  
        u32 contrib = 0;  
      
        if (likely(n <= LOAD_AVG_PERIOD))  
            return runnable_avg_yN_sum[n];  
        else if (unlikely(n >= LOAD_AVG_MAX_N))  
            return LOAD_AVG_MAX;  
      
        /* Compute Sum k^n combining precomputed values for k^i, Sum k^j */  
        do {  
            contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */  
            contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];  
      
            n -= LOAD_AVG_PERIOD;  
        } while (n > LOAD_AVG_PERIOD);  
       
        contrib = decay_load(contrib, n);  
        return contrib + runnable_avg_yN_sum[n];  
    }  
    /* 
     * Precomputed Sum y^k { 1<=k<=n }.  These are floor(true_value) to prevent 
     * over-estimates when re-combining. 
     */  
    static const u32 runnable_avg_yN_sum[] = {  
            0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,  
         9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,  
        17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,  
    };  
    

    针对__contrib第二点当period>345的时候,load变成一个常数怎么理解的?
    即load = LOAD_AVG_MAX (47742),我们简单来证明以下:
    设一个等比数列的首项是a1,公比是y,数列前n项和是Sn,当公比不为1时
    Sn=a1+a1y+a1y2+…+a1y(n-1)
    将这个式子两边同时乘以公比y,得
    ySn=a1y+a1y2+…+a1y(n-1)+a1y^n
    两式相减,得
    (1-y)Sn=a1-a1y^n
    所以,当公比不为1时,等比数列的求和公式:
    Sn=a1(1-y^n)/(1-y)
    对于一个无穷递降数列,数列的公比小于1,当上式得n趋向于正无穷大时,分子括号中的值趋近于1,取极限即得无穷递减数列求和公式:
    S=a1/(1-y)
    由于要使y^32 = 0.5, 那么经过计算之后,y≈0.9785 (0.9785^32≈0.498823)
    所以对于period > LOAD_AVG_MAX_N(345),等比数列求和数值如下:
    sn=a1(1-yn)/(1-y)=1024*(1-0.9785n)/(1-0.9785)
    画出曲线图如下:
    这里写图片描述

    从当n趋于一个数值,当n增大,等比数列之后增加几乎可以忽略,并且无穷大∞,则等比数列之和为a1/(1-y)=1024/(1-0.9785)≈47627.9069988967,与47742数值差不多.
    上面说明了原理,下面就是实际的代码分析了.

    那么上面的两个表格runnable_avg_yN_inv和runnable_avg_yN_sum是怎么计算的,下面是一个通过C语言计算的小程序:

    #include <stdio.h>    
    #include <math.h>    
    #if 1    
    #define N 32    
    #define WMULT_SHIFT 32    
        
    const long WMULT_CONST = ((1UL << N) - 1);    
    double y;    
        
    long runnable_avg_yN_inv[N];    
    void calc_mult_inv()   
    {    
        int i;    
        double yn = 0;    
        
        printf("inverses
    ");    
        for (i = 0; i < N; i++) {    
            yn = (double)WMULT_CONST * pow(y, i);    
            runnable_avg_yN_inv[i] = yn;    
            printf("%2d: 0x%8lx
    ", i, runnable_avg_yN_inv[i]);    
        }    
        printf("
    ");    
    }    
        
    long mult_inv(long c, int n)   
    {    
        return (c * runnable_avg_yN_inv[n]) >>  WMULT_SHIFT;    
    }    
        
    void calc_yn_sum(int n)    
    {    
        int i;    
        double sum = 0, sum_fl = 0, diff = 0;    
        
        /*  
         * We take the floored sum to ensure the sum of partial sums is never  
         * larger than the actual sum.  
         */    
        printf("sum y^n
    ");    
        printf("   %8s  %8s %8s
    ", "exact", "floor", "error");    
        for (i = 1; i <= n; i++) {    
            sum = (y * sum + y * 1024);    
            sum_fl = floor(y * sum_fl+ y * 1024);    
            printf("%2d: %8.0f  %8.0f %8.0f
    ", i, sum, sum_fl,    
                sum_fl - sum);    
        }    
        printf("
    ");    
    }    
        
    void calc_conv(long n)   
    {    
        long old_n;    
        int i = -1;    
        
        printf("convergence (LOAD_AVG_MAX, LOAD_AVG_MAX_N)
    ");    
        do {    
            old_n = n;    
            n = mult_inv(n, 1) + 1024;    
            i++;    
        } while (n != old_n);    
        printf("%d> %ld
    ", i - 1, n);    
        printf("
    ");    
    }    
        
    #endif  
    int  main(void)   
    {    
    #if 1  
        /* y^32 = 0.5,so y=pow(0.5,32.0)*/
        y = pow(0.5, 1/(double)N);    
        calc_mult_inv();    
        calc_conv(1024);    
        calc_yn_sum(N);    
    #endif  
      
        return 0;  
    }    
    

    runnable_avg_yN_inv[i]的数值如下:

    0: 0xffffffff
    1: 0xfa83b2da
    2: 0xf5257d14
    3: 0xefe4b99a
    4: 0xeac0c6e6
    5: 0xe5b906e6
    6: 0xe0ccdeeb
    7: 0xdbfbb796
    8: 0xd744fcc9
    9: 0xd2a81d91
    10: 0xce248c14
    11: 0xc9b9bd85
    12: 0xc5672a10
    13: 0xc12c4cc9
    14: 0xbd08a39e
    15: 0xb8fbaf46
    16: 0xb504f333
    17: 0xb123f581
    18: 0xad583ee9
    19: 0xa9a15ab4
    20: 0xa5fed6a9
    21: 0xa2704302
    22: 0x9ef5325f
    23: 0x9b8d39b9
    24: 0x9837f050
    25: 0x94f4efa8
    26: 0x91c3d373
    27: 0x8ea4398a
    28: 0x8b95c1e3
    29: 0x88980e80
    30: 0x85aac367
    31: 0x82cd8698

    与table是吻合的.
    也就是说两个table的通项公式如下(我们知道y^32约等于0.5推导出y=0.9785):
    runnable_avg_yN_inv[n]=(2^32-1) * (0.9785^n);
    runnable_avg_yN_sum[n]=1024(y + y2+…+yn);*
    所以在函数decay_load的时候,需要>> 32,这是单个时间点的衰减数值
    下面画一张图来详细说明上面的逻辑关系:
    这里写图片描述

    decay_load是计算Phase2的一个load的衰减,比如在Phase2起始阶段load为load_x,经过两个阶段的衰减:

    • x*32ms=(N/32) * 32之后变为:load_x >> (N/32),即每隔32ms,load_x衰减一半,符合y^32=0.5.
    • 那么剩下的(N-x)ms,继续衰减,使用公式计算即:(load_x >> (N/32)) * y^(N-x).这样就明白了.单个load的衰减计算方式.

    对于累加load的计算方式也使用这张图来说明:
    __compute_runnable_contrib(N)怎么来计算累加的负载:

    • x*32ms=(N/32) * 32,可以根据查表计是32ms倍数的周期内,累加的负载可以通过查表获取,并且累加的负载在每个32ms周期都会衰减一半,23371=runnable_avg_yN_sum[31].即计算公式如下:
      这里写图片描述

    或者:
    contrib = 1024(y+y2+…+y32+…+y^64…) = 1024(y+…+y32)+y32*1024(y+…+y32)…
    由于y^32=0.5.所以可以对上

    • 对前x*32ms已经累加了,现在需要对这部分在(N-x)进行衰减操作,即contrib=decay_load(contrib,N-x)
    • 最后计算contrib+runnable_avg_yN_sum[N-x]就是最后累加的结果了.

    ###PELT Entity级的负载计算

    • Entity级的负载计算也称作PELT(Per-Entity Load Tracking)。
    • 注意负载计算时使用的时间都是实际运行时间而不是虚拟运行时间vruntime。

    过程如下:

    scheduler_tick() -> task_tick_fair() -> entity_tick() -> update_load_avg()  
    /* Update task and its cfs_rq load average */  
    static inline void update_load_avg(struct sched_entity *se, int flags)  
    {  
        struct cfs_rq *cfs_rq = cfs_rq_of(se);  
        u64 now = cfs_rq_clock_task(cfs_rq);  
        int cpu = cpu_of(rq_of(cfs_rq));  
        int decayed;  
        void *ptr = NULL;  
      
        /* 
         * Track task load average for carrying it to new CPU after migrated, and 
         * track group sched_entity load average for task_h_load calc in migration 
         *//*cfs load tracing时间已经update,也就是已经初始化过了
         SKIP_AGE_LOAD是忽略load tracing的flag*/  
        if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD)) {  
           /*核心函数,即PELT的实现,注意se->on_rq的数值,如果一直在运行的进程,则
        se->on_rq,load=老负载衰减+新负载,如果是休眠唤醒进程se->on_rq=0,则他们在
         休眠期间的load不会累加,只有老负载被衰减,睡眠时间不会统计在内,直到task在rq里面*/
            __update_load_avg(now, cpu, &se->avg,  
                  se->on_rq * scale_load_down(se->load.weight),  
                  cfs_rq->curr == se, NULL);  
        }  
      
        decayed  = update_cfs_rq_load_avg(now, cfs_rq, true);  
        decayed |= propagate_entity_load_avg(se);  
      
        if (decayed && (flags & UPDATE_TG))  
            update_tg_load_avg(cfs_rq, 0);  
      
        if (entity_is_task(se)) {  
    #ifdef CONFIG_SCHED_WALT  
            ptr = (void *)&(task_of(se)->ravg);  
    #endif  
            trace_sched_load_avg_task(task_of(se), &se->avg, ptr);  
        }  
    }  
    

    #####核心函数1 __update_load_avg()的实现
    我们先明白下面几个参数的含义:

    • load_sum
    • util_sum
    • load_avg
    • util_avg

    上面几个涉及到cfs_rq结构体的成员变量:

    struct cfs_rq {  
    ..............  
        /* 
         * CFS load tracking 
         */  
        struct sched_avg avg;  
        u64 runnable_load_sum;  
        unsigned long runnable_load_avg;  
    ..............  
    }  
    /* 
     * The load_avg/util_avg accumulates an infinite geometric series. 
     * 1) load_avg factors frequency scaling into the amount of time that a 
     * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the 
     * aggregated such weights of all runnable and blocked sched_entities. 
     * 2) util_avg factors frequency and cpu scaling into the amount of time 
     * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE]. 
     * For cfs_rq, it is the aggregated such times of all runnable and 
     * blocked sched_entities. 
     * The 64 bit load_sum can: 
     * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with 
     * the highest weight (=88761) always runnable, we should not overflow 
     * 2) for entity, support any load.weight always runnable 
     */  
    struct sched_avg {  
        u64 last_update_time, load_sum;  
        u32 util_sum, period_contrib;  
        unsigned long load_avg, util_avg;  
    };
    

    而且如果知道了load_sum,util_sum,runnable_load_sum,这几个数值除以LOAD_AVG_MAX(47742)则就可以直接计算load_avg,util_avg,runnable_load_avg,即:
    util_avg = util_sum / LOAD_AVG_MAX(47742).

    • scale_freq:https://blog.csdn.net/wukongmingjing/article/details/81635383
    • scale_cpu:https://blog.csdn.net/wukongmingjing/article/details/81635383

    关键函数的代码如下:

    /* 
     * We can represent the historical contribution to runnable average as the 
     * coefficients of a geometric series.  To do this we sub-divide our runnable 
     * history into segments of approximately 1ms (1024us); label the segment that 
     * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g. 
     * 
     * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ... 
     *      p0            p1           p2 
     *     (now)       (~1ms ago)  (~2ms ago) 
     * 
     * Let u_i denote the fraction of p_i that the entity was runnable. 
     * 
     * We then designate the fractions u_i as our co-efficients, yielding the 
     * following representation of historical load: 
     *   u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ... 
     * 
     * We choose y based on the with of a reasonably scheduling period, fixing: 
     *   y^32 = 0.5 
     * 
     * This means that the contribution to load ~32ms ago (u_32) will be weighted 
     * approximately half as much as the contribution to load within the last ms 
     * (u_0). 
     * 
     * When a period "rolls over" and we have new u_0`, multiplying the previous 
     * sum again by y is sufficient to update: 
     *   load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... ) 
     *            = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}] 
     */  
    static __always_inline int  
    __update_load_avg(u64 now, int cpu, struct sched_avg *sa,  
              unsigned long weight, int running, struct cfs_rq *cfs_rq)  
    {  
        u64 delta, scaled_delta, periods;  
        u32 contrib;  
        unsigned int delta_w, scaled_delta_w, decayed = 0;  
        unsigned long scale_freq, scale_cpu;  
      
    #ifdef CONFIG_64BIT_ONLY_CPU  
        struct sched_entity *se;  
        unsigned long load_avg_before = sa->load_avg;  
    #endif  
        /*就是示意图中的delta1+delta2+delta3*/
        delta = now - sa->last_update_time;  
        /* 
         * This should only happen when time goes backwards, which it 
         * unfortunately does during sched clock init when we swap over to TSC. 
         */  
        if ((s64)delta < 0) {  
            sa->last_update_time = now;  
            return 0;  
        }  
      
        /* 
         * Use 1024ns as the unit of measurement since it's a reasonable 
         * approximation of 1us and fast to compute. 
         */  
        delta >>= 10;  
        if (!delta)  
            return 0;  
        sa->last_update_time = now;  
        /*scale_freq = (curr_freq << 10)/policy->max*/
        scale_freq = arch_scale_freq_capacity(NULL, cpu);
        /*scale_cpu = capacity[cpu],dts获取的,不同cluster capacity不同*/  
        scale_cpu = arch_scale_cpu_capacity(NULL, cpu);  
        trace_sched_contrib_scale_f(cpu, scale_freq, scale_cpu);  
      
        /* delta_w is the amount already accumulated against our next period */  
        delta_w = sa->period_contrib;  
        /*表示delta1+delta2大于一个最小刻度1024,如果小于,则就只剩下delta3计算,delta1,
        delta2不存在*/
        if (delta + delta_w >= 1024) {  
            decayed = 1;  
      
            /* how much left for next period will start over, we don't know yet */  
            sa->period_contrib = 0;  
      
            /* 
             * Now that we know we're crossing a period boundary, figure 
             * out how much from delta we need to complete the current 
             * period and accrue it. 
             */
            /*开始Phase1阶段的load_sum 和util_sum的计算*/  
            delta_w = 1024 - delta_w;  
            scaled_delta_w = cap_scale(delta_w, scale_freq);  
            if (weight) {  
                sa->load_sum += weight * scaled_delta_w;  
                if (cfs_rq) {  
                    cfs_rq->runnable_load_sum +=  
                            weight * scaled_delta_w;  
                }  
            }  
            if (running)  
                sa->util_sum += scaled_delta_w * scale_cpu;  
            /*结束Phase1阶段的load_sum 和util_sum的计算*/  
            delta -= delta_w;  
            
            /* Figure out how many additional periods this update spans */
            /*开始Phase2阶段的load_sum 和util_sum的计算,计算阶段Phase2存在多少个1024
             的倍数和余数*/   
            periods = delta / 1024;  
            delta %= 1024;  
            /*对阶段Phase1的load_sum进行衰减*/
            sa->load_sum = decay_load(sa->load_sum, periods + 1);  
            if (cfs_rq) {
                /*对阶段Phase1的runnable_load_sum进行衰减*/  
                cfs_rq->runnable_load_sum =  
                    decay_load(cfs_rq->runnable_load_sum, periods + 1);  
            }  
            /*对Phase1阶段util_sum进行衰减*/
            sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);  
      	/*至此,上面已经得到了阶段Phase2衰减前的load_sum,util_sum,
            runnable_load_sum的数值*/
            /* Efficiently calculate sum (1..n_period) 1024*y^i */ 
            
            /*对Phase2的load/util数据进行衰减*/ 
            contrib = __compute_runnable_contrib(periods);  
            contrib = cap_scale(contrib, scale_freq);  
            if (weight) {  
                sa->load_sum += weight * contrib;  
                if (cfs_rq)  
                    cfs_rq->runnable_load_sum += weight * contrib;  
            }  
            if (running)  
                sa->util_sum += contrib * scale_cpu;  
        }  
         /*结束Phase2阶段的load_sum 和util_sum的计算*/ 
        /* Remainder of delta accrued against u_0` */
        /*开始阶段Phase3的的load/util的计算*/  
        scaled_delta = cap_scale(delta, scale_freq);  
        if (weight) {  
            sa->load_sum += weight * scaled_delta;  
            if (cfs_rq)  
                cfs_rq->runnable_load_sum += weight * scaled_delta;  
        }  
        if (running)  
            sa->util_sum += scaled_delta * scale_cpu;  
      /*结束阶段Phase3的的load/util的计算*/
        /*sa->period_contrib ∈[0,1024)*/
        sa->period_contrib += delta;  
      /*如果衰减了,则计算load的avg的数值,否则由于颗粒度太小,没有计算的必要*/
        if (decayed) {  
            sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);  
            if (cfs_rq) {  
                cfs_rq->runnable_load_avg =  
                    div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);  
            }  
            sa->util_avg = sa->util_sum / LOAD_AVG_MAX;  
        }  
      
    #ifdef CONFIG_64BIT_ONLY_CPU  
        if (!cfs_rq) {  
            if (is_sched_avg_32bit(sa)) {  
                se = container_of(sa, struct sched_entity, avg);  
                cfs_rq_of(se)->runnable_load_avg_32bit +=  
                    sa->load_avg - load_avg_before;  
            }  
        }  
    #endif  
      
        return decayed;  
    }  
    /* 
     * Approximate: 
     *   val * y^n,    where y^32 ~= 0.5 (~1 scheduling period) 
     */  
    static __always_inline u64 decay_load(u64 val, u64 n)  
    {  
        unsigned int local_n;  
      
        if (!n)  
            return val;  
        else if (unlikely(n > LOAD_AVG_PERIOD * 63))  
            return 0;  
      
        /* after bounds checking we can collapse to 32-bit */  
        local_n = n;  
        /*计算公式为:load = (load >> (n/period)) * y^(n%period),如果n是32的整数倍
            ,因为2^32 = 1/2,相当于右移一位计算n有多少个32,每个32右移一位*/
        /* 
         * As y^PERIOD = 1/2, we can combine 
         *    y^n = 1/2^(n/PERIOD) * y^(n%PERIOD) 
         * With a look-up table which covers y^n (n<PERIOD) 
         * 
         * To achieve constant time decay_load. 
         */  
        if (unlikely(local_n >= LOAD_AVG_PERIOD)) {  
            val >>= local_n / LOAD_AVG_PERIOD;  
            local_n %= LOAD_AVG_PERIOD;  
        }  
        /*将val*y^32,转化为val*runnable_avg_yN_inv[n%LOAD_AVG_PERIOD]>>32*/
        val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);  
        return val;  
    }  
    /* 
     * For updates fully spanning n periods, the contribution to runnable 
     * average will be: Sum 1024*y^n 
     * 
     * We can compute this reasonably efficiently by combining: 
     *   y^PERIOD = 1/2 with precomputed Sum 1024*y^n {for  n <PERIOD} 
     */  
    static u32 __compute_runnable_contrib(u64 n)  
    {  
        u32 contrib = 0;  
      
        if (likely(n <= LOAD_AVG_PERIOD))  
            return runnable_avg_yN_sum[n];  
        else if (unlikely(n >= LOAD_AVG_MAX_N))  
            return LOAD_AVG_MAX;  
        /*如果n>32,计算32的整数部分*/
        /* Compute Sum k^n combining precomputed values for k^i, Sum k^j */  
        do {  
            /*每整数32的衰减就是0.5*/
            contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */  
            contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];  
      
            n -= LOAD_AVG_PERIOD;  
        } while (n > LOAD_AVG_PERIOD); 
     
        /*将整数部分对余数n进行衰减*/
        contrib = decay_load(contrib, n); 
        /*剩余余数n,使用查表法计算*/ 
        return contrib + runnable_avg_yN_sum[n];  
    }  
    

    #####核心函数2 update_cfs_rq_load_avg()的实现

    /** 
     * update_cfs_rq_load_avg - update the cfs_rq's load/util averages 
     * @now: current time, as per cfs_rq_clock_task() 
     * @cfs_rq: cfs_rq to update 
     * @update_freq: should we call cfs_rq_util_change() or will the call do so 
     * 
     * The cfs_rq avg is the direct sum of all its entities (blocked and runnable) 
     * avg. The immediate corollary is that all (fair) tasks must be attached, see 
     * post_init_entity_util_avg(). 
     * 
     * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example. 
     * 
     * Returns true if the load decayed or we removed load. 
     * 
     * Since both these conditions indicate a changed cfs_rq->avg.load we should 
     * call update_tg_load_avg() when this function returns true. 
     */  
    static inline int  
    update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)  
    {  
        struct sched_avg *sa = &cfs_rq->avg;  
        int decayed, removed = 0, removed_util = 0;  
        /*是否设置了remove_load_avg和remove_util_avg,如果设置了就修正之前计算的
        load/util数值*/
        if (atomic_long_read(&cfs_rq->removed_load_avg)) {  
            s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);  
            sub_positive(&sa->load_avg, r);  
            sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);  
            removed = 1;  
            set_tg_cfs_propagate(cfs_rq);  
        }  
      
        if (atomic_long_read(&cfs_rq->removed_util_avg)) {  
            long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);  
            sub_positive(&sa->util_avg, r);  
            sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);  
            removed_util = 1;  
            set_tg_cfs_propagate(cfs_rq);  
        }  
       /*对校准后的load进行重新计算*/
        decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,  
            scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);  
      
    #ifndef CONFIG_64BIT  
        smp_wmb();  
        cfs_rq->load_last_update_time_copy = sa->last_update_time;  
    #endif  
      
        /* Trace CPU load, unless cfs_rq belongs to a non-root task_group */  
        if (cfs_rq == &rq_of(cfs_rq)->cfs)  
            trace_sched_load_avg_cpu(cpu_of(rq_of(cfs_rq)), cfs_rq);  
        /*如果为true,则调用schedutil governor进行频率的调整!!!*/
        if (update_freq)  
            cfs_rq_util_change(cfs_rq);  
      
        return decayed || removed;  
    }  
    
    

    update_load_avg剩下的函数执行如下:

    • propagate_entity_load_avg,更新调度实体本身自己的load/util信息.如果是一个进程则不需要propagate处理.
    • 根据decayed的数值和需要更新进程组信息,则调用update_tg_load_avg,更新task_group信息

    ###CPU级的负载计算update_cpu_load_active(rq)

    __update_load_avg()是计算se/cfs_rq级别的负载,在cpu级别linux使用update_cpu_load_active(rq)来计算整个cpu->rq负载的变化趋势。计算也是周期性的,周期为TICK(时间不固定,由于是tickless系统)。

    scheduler_tick()----->
    /* 
     * Called from scheduler_tick() 
     */  
    void update_cpu_load_active(struct rq *this_rq)  
    {  /*获取cfs_rq的runnable_load_avg的数值*/
        unsigned long load = weighted_cpuload(cpu_of(this_rq));  
        /* 
         * See the mess around update_idle_cpu_load() / update_cpu_load_nohz(). 
         */  /*设置更新rq load的时间戳*/
        this_rq->last_load_update_tick = jiffies;
       /核心函数*/  
        __update_cpu_load(this_rq, load, 1);  
    }  
    /* Used instead of source_load when we know the type == 0 */  
    static unsigned long weighted_cpuload(const int cpu)  
    {  
        return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);  
    }  
      
    static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)  
    {  
        /*这个数值在setity级别的计算过程中已经update了*/
        return cfs_rq->runnable_load_avg;  
    }  
      
    /* 
     * Update rq->cpu_load[] statistics. This function is usually called every 
     * scheduler tick (TICK_NSEC). With tickless idle this will not be called 
     * every tick. We fix it up based on jiffies. 
     */  
    static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,  
                      unsigned long pending_updates)  
    {  
        int i, scale;  
        /*统计数据使用*/
        this_rq->nr_load_updates++;  
      
        /* Update our load: */
        /*将当前最新的load,更新在cpu_load[0]中*/  
        this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */  
        for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {  
            unsigned long old_load, new_load;  
      
            /* scale is effectively 1 << i now, and >> i divides by scale */  
            
            old_load = this_rq->cpu_load[i];  
            /*对old_load进行衰减.果因为进入noHZ模式,有pending_updates个tick没有
             更新,先老化原有负载*/
            old_load = decay_load_missed(old_load, pending_updates - 1, i);  
            new_load = this_load;  
            /* 
             * Round up the averaging division if load is increasing. This 
             * prevents us from getting stuck on 9 if the load is 10, for 
             * example. 
             */  
            if (new_load > old_load)  
                new_load += scale - 1;  
            /*cpu_load的计算公式 */
            this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;  
        }  
        /*更新rq的age_stamp时间戳,即rq从cpu启动到现在存在的时间(包括idle和running时间)
        ,同时更新rq里面rt_avg负载,即每个周期(500ms)衰减一半*/
        sched_avg_update(this_rq);  
    }  
    void sched_avg_update(struct rq *rq)  
    {  
        s64 period = sched_avg_period();  
      
        while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {  
            /* 
             * Inline assembly required to prevent the compiler 
             * optimising this loop into a divmod call. 
             * See __iter_div_u64_rem() for another example of this. 
             */  
            asm("" : "+rm" (rq->age_stamp));  
            rq->age_stamp += period;  
            rq->rt_avg /= 2;  
        }  
    }  
    

    代码注释中详细解释了cpu_load的计算方法:

    • 每个tick计算不同idx时间等级的load,计算公式:load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
    • 如果cpu因为noHZ错过了(n-1)个tick的更新,那么计算load要分两步:
    1. 首先老化(decay)原有的load:load = ((2^idx - 1) / 2idx)(n-1) * load
    2. 再按照一般公式计算load:load = load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
    • 为了decay的加速计算,设计了decay_load_missed()查表法计算:
    /* 
     * The exact cpuload at various idx values, calculated at every tick would be 
     * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load 
     * 
     * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called 
     * on nth tick when cpu may be busy, then we have: 
     * load = ((2^idx - 1) / 2^idx)^(n-1) * load 
     * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load 
     * 
     * decay_load_missed() below does efficient calculation of 
     * load = ((2^idx - 1) / 2^idx)^(n-1) * load 
     * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load 
     * 
     * The calculation is approximated on a 128 point scale. 
     * degrade_zero_ticks is the number of ticks after which load at any 
     * particular idx is approximated to be zero. 
     * degrade_factor is a precomputed table, a row for each load idx. 
     * Each column corresponds to degradation factor for a power of two ticks, 
     * based on 128 point scale. 
     * Example: 
     * row 2, col 3 (=12) says that the degradation at load idx 2 after 
     * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8). 
     * 
     * With this power of 2 load factors, we can degrade the load n times 
     * by looking at 1 bits in n and doing as many mult/shift instead of 
     * n mult/shifts needed by the exact degradation. 
     */  
    #define DEGRADE_SHIFT       7  
    static const unsigned char  
            degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};  
    static const unsigned char  
            degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {  
                        {0, 0, 0, 0, 0, 0, 0, 0},  
                        {64, 32, 8, 0, 0, 0, 0, 0},  
                        {96, 72, 40, 12, 1, 0, 0},  
                        {112, 98, 75, 43, 15, 1, 0},  
                        {120, 112, 98, 76, 45, 16, 2} };  
      
    /* 
     * Update cpu_load for any missed ticks, due to tickless idle. The backlog 
     * would be when CPU is idle and so we just decay the old load without 
     * adding any new load. 
     */  
    static unsigned long  
    decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)  
    {  
        int j = 0;  
      
        if (!missed_updates)  
            return load;  
      
        if (missed_updates >= degrade_zero_ticks[idx])  
            return 0;  
      
        if (idx == 1)  
            return load >> missed_updates;  
      
        while (missed_updates) {  
            if (missed_updates % 2)  
                load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;  
      
            missed_updates >>= 1;  
            j++;  
        }  
        return load;  
    }  
    
    
    • cpu_load[]含5条均线,反应不同时间窗口长度下的负载情况;主要供load_balance()在不同场景判断是否负载平衡的比较基准,常用为cpu_load[0]和cpu_load[1];
    • cpu_load[index]对应的时间长度为{0, 8, 32, 64, 128},单位为tick;
    • 移动均线的目的在于平滑样本的抖动,确定趋势的变化方向;

    ###系统级的负载计算calc_global_load_tick()

    系统级的平均负载(load average)可以通过以下命令(uptime、top、cat /proc/loadavg)查看:

    mate20:/ # cat proc/loadavg && uptime                                                                                                                                                                     
    1.38 1.49 1.58 1/1085 20184  
     16:10:43 up 1 day,  2:29,  0 users,  load average: 1.38, 1.49, 1.58
    
    

    “load average:”后面的3个数字分别表示1分钟、5分钟、15分钟的load average。可以从几方面去解析load average:

    • If the averages are 0.0, then your system is idle.
    • If the 1 minute average is higher than the 5 or 15 minute averages, then load is increasing.
    • If the 1 minute average is lower than the 5 or 15 minute averages, then load is decreasing.
    • If they are higher than your CPU count, then you might have a performance problem (it depends).

    最早的系统级平均负载(load average)只会统计runnable状态。但是linux后面觉得这种统计方式代表不了系统的真实负载;举一个例子:系统换一个低速硬盘后,他的 runnable负载还会小于高速硬盘时的值;linux认为睡眠状态 (TASK_INTERRUPTIBLE/TASK_UNINTERRUPTIBLE)也是系统的一种负载,系统得不到服务是因为io/外设的负载过重; 系统级负载统计函数calc_global_load_tick()中会把 (this_rq->nr_running+this_rq->nr_uninterruptible)都计入负载.

    下面来看看具体的代码计算:
    每个cpu每隔5s更新本cpu rq的(nr_running+nr_uninterruptible)任务数量到系统全局变量 calc_load_tasks,calc_load_tasks是整系统多个cpu(nr_running+nr_uninterruptible)任 务数量的总和,多cpu在访问calc_load_tasks变量时使用原子操作来互斥。

    /* 
     * Called from scheduler_tick() to periodically update this CPU's 
     * active count. 
     */  
    void calc_global_load_tick(struct rq *this_rq)  
    {  
        long delta;  
        /*判断5s更新周期是否到达*/
        if (time_before(jiffies, this_rq->calc_load_update))  
            return;  
        /*计算本cpu的负载变化到全局变量calc_load_tasks中*/
        delta  = calc_load_fold_active(this_rq);  
        if (delta)  
            atomic_long_add(delta, &calc_load_tasks);  
        /*更新calc_load_update时间.LOAD_FREQ:(5*HZ+1),5s*/
        this_rq->calc_load_update += LOAD_FREQ;  
    }  
    

    多个cpu更新calc_load_tasks,但是计算load只由一个cpu来完成,这个cpu就是tick_do_timer_cpu。在 linux time一文中,我们看到这个cpu就是专门来更新时间戳timer的(update_wall_time())。实际上它在更新时间戳的同时也会调用 do_timer() -> calc_global_load()来计算系统负载。
    核心算法calc_load()的思想也是:旧的load老化系数 + 新load系数
    假设单位1为FIXED_1=2^11=2028,EXP_1=1884、EXP_5=2014、EXP_15=2037,load的计算:
    load = old_load(EXP_?/FIXED_1) + new_load(FIXED_1-EXP_?)/FIXED_1**

    do_timer() -> calc_global_load()   
    ↓ 
    void calc_global_load(unsigned long ticks)  
    {  
        long active, delta;  
      
        /* (1) 计算的间隔时间为5s + 10tick, 
            加10tick的目的就是让所有cpu都更新完calc_load_tasks, 
            tick_do_timer_cpu再来计算 
         */  
        if (time_before(jiffies, calc_load_update + 10))  
            return;  
      
        /* 
         * Fold the 'old' idle-delta to include all NO_HZ cpus. 
         */  
        delta = calc_load_fold_idle();  
        if (delta)  
            atomic_long_add(delta, &calc_load_tasks);  
      
        /* (2) 读取全局统计变量 */  
        active = atomic_long_read(&calc_load_tasks);  
        active = active > 0 ? active * FIXED_1 : 0;  
      
        /* (3) 计算1分钟、5分钟、15分钟的负载 */  
        avenrun[0] = calc_load(avenrun[0], EXP_1, active);  
        avenrun[1] = calc_load(avenrun[1], EXP_5, active);  
        avenrun[2] = calc_load(avenrun[2], EXP_15, active);  
      
        calc_load_update += LOAD_FREQ;  
      
        /* 
         * In case we idled for multiple LOAD_FREQ intervals, 
           catch up in bulk. */  
        calc_global_nohz();  
    }  
      
    |→  
      
    /* 
     * a1 = a0 * e + a * (1 - e) 
     */  
    static unsigned long  
    calc_load(unsigned long load, unsigned long exp, unsigned long active)  
    {  
        unsigned long newload;  
      
        newload = load * exp + active * (FIXED_1 - exp);  
        if (active >= load)  
            newload += FIXED_1-1;  
      
        return newload / FIXED_1;  
    }  
      
    #define FSHIFT      11      /* nr of bits of precision */  
    #define FIXED_1     (1<<FSHIFT) /* 1.0 as fixed-point */  
    #define LOAD_FREQ   (5*HZ+1)    /* 5 sec intervals */  
    #define EXP_1       1884        /* 1/exp(5sec/1min) as fixed-point */  
    #define EXP_5       2014        /* 1/exp(5sec/5min) */  
    #define EXP_15      2037        /* 1/exp(5sec/15min) */ 
    

    对于cat /proc/loadavg的数值计算源码如下:

    #define LOAD_INT(x) ((x) >> FSHIFT)  
    #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)  
      
    static int loadavg_proc_show(struct seq_file *m, void *v)  
    {  
        unsigned long avnrun[3];  
      
        get_avenrun(avnrun, FIXED_1/200, 0);  
        /*其实还是直接获取系统全局变量,avnrun的数值在计算系统负载的时候已经计算了*/
        seq_printf(m, "%lu.%02lu %lu.%02lu %lu.%02lu %ld/%d %d
    ",  
            LOAD_INT(avnrun[0]), LOAD_FRAC(avnrun[0]),  
            LOAD_INT(avnrun[1]), LOAD_FRAC(avnrun[1]),  
            LOAD_INT(avnrun[2]), LOAD_FRAC(avnrun[2]),  
            nr_running(), nr_threads,  
            task_active_pid_ns(current)->last_pid);  
        return 0;  
    }  
      
    static int loadavg_proc_open(struct inode *inode, struct file *file)  
    {  
        return single_open(file, loadavg_proc_show, NULL);  
    }  
      
    static const struct file_operations loadavg_proc_fops = {  
        .open       = loadavg_proc_open,  
        .read       = seq_read,  
        .llseek     = seq_lseek,  
        .release    = single_release,  
    };  
      
    static int __init proc_loadavg_init(void)  
    {  
        proc_create("loadavg", 0, NULL, &loadavg_proc_fops);  
        return 0;  
    }  
    fs_initcall(proc_loadavg_init);  
    

    至此就计算完毕了.

    【作者】张昺华
    【大饼教你学系列】https://edu.csdn.net/course/detail/10393
    【新浪微博】 张昺华--sky
    【twitter】 @sky2030_
    【微信公众号】 张昺华
    本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.
  • 相关阅读:
    CLR Via
    HTML&XML
    SNS研究
    DotNet&C#
    电子商务
    WCF学习
    SQL
    构架设计
    JS&Ajax
    NHibernate之旅系列文章导航
  • 原文地址:https://www.cnblogs.com/sky-heaven/p/13963785.html
Copyright © 2011-2022 走看看