zoukankan      html  css  js  c++  java
  • linux 串口驱动(三) 【转】

    转自:http://blog.chinaunix.net/uid-27717694-id-3495825.html

    三、串口的打开
    在用户空间执行open操作的时候,就会执行uart_ops->open. Uart_ops的定义如下:
     
    tty_open=>init_dev=>initialize_tty_struct=>tty_ldisc_assign=>
    将tty_ldisc_N_TTY复制给该dev
    然后tty->driver->open(tty, filp);

    tty->driver为上面uart_register_driver时注册的tty_driver驱动,它的操作方法集为uart_ops.
    tty_fops.tty_open=>
    tty->driver->open就是uart_ops.uart_open=>uart_startup=>
    port->ops->startup(port)这里port的ops就是serial_pxa_pops;也这就是该物理uart口,struct uart_port的操作函数
    serial_pxa_pops.startup就是serial_pxa_startup

    static const struct tty_operations uart_ops = {
         .open         = uart_open,
         .close        = uart_close,
         .write        = uart_write,
         .put_char = uart_put_char,
         .flush_chars  = uart_flush_chars,
         .write_room   = uart_write_room,
         .chars_in_buffer= uart_chars_in_buffer,
         .flush_buffer = uart_flush_buffer,
         .ioctl        = uart_ioctl,
         .throttle = uart_throttle,
         .unthrottle   = uart_unthrottle,
         .send_xchar   = uart_send_xchar,
         .set_termios  = uart_set_termios,
         .stop         = uart_stop,
         .start        = uart_start,
         .hangup       = uart_hangup,
         .break_ctl    = uart_break_ctl,
         .wait_until_sent= uart_wait_until_sent,
    #ifdef CONFIG_PROC_FS
         .read_proc    = uart_read_proc,
    #endif
         .tiocmget = uart_tiocmget,
         .tiocmset = uart_tiocmset,
    };
    对应open的操作接口为uart_open.代码如下:
    static int uart_open(struct tty_struct *tty, struct file *filp)
    {
         struct uart_driver *drv = (struct uart_driver *)tty->driver->driver_state;
         struct uart_state *state;
         int retval, line = tty->index;

         BUG_ON(!kernel_locked());
         pr_debug("uart_open(%d) called ", line);

         /*
          * tty->driver->num won't change, so we won't fail here with
          * tty->driver_data set to something non-NULL (and therefore
          * we won't get caught by uart_close()).
          */
         retval = -ENODEV;
         if (line >= tty->driver->num)
             goto fail;

         /*
          * We take the semaphore inside uart_get to guarantee that we won't
          * be re-entered while allocating the info structure, or while we
          * request any IRQs that the driver may need.  This also has the nice
          * side-effect that it delays the action of uart_hangup, so we can
          * guarantee that info->tty will always contain something reasonable.
          */
         state = uart_get(drv, line);
         if (IS_ERR(state)) {
             retval = PTR_ERR(state);
             goto fail;
         }

         /*
          * Once we set tty->driver_data here, we are guaranteed that
          * uart_close() will decrement the driver module use count.
          * Any failures from here onwards should not touch the count.
          */
         tty->driver_data = state;
         tty->low_latency = (state->port->flags & UPF_LOW_LATENCY) ? 1 : 0;
         tty->alt_speed = 0;
         state->info->tty = tty;

         /*
          * If the port is in the middle of closing, bail out now.
          */
         if (tty_hung_up_p(filp)) {
             retval = -EAGAIN;
             state->count--;
             mutex_unlock(&state->mutex);
             goto fail;
         }

         /*
          * Make sure the device is in D0 state.
          */
         if (state->count == 1)
             uart_change_pm(state, 0);

         /*
          * Start up the serial port.
          */
         retval = uart_startup(state, 0);

         /*
          * If we succeeded, wait until the port is ready.
          */
         if (retval == 0)
             retval = uart_block_til_ready(filp, state);
         mutex_unlock(&state->mutex);

         /*
          * If this is the first open to succeed, adjust things to suit.
          */
         if (retval == 0 && !(state->info->flags & UIF_NORMAL_ACTIVE)) {
             state->info->flags |= UIF_NORMAL_ACTIVE;

             uart_update_termios(state);
         }

    fail:
         return retval;
    }
    在这里函数里,继续完成操作的设备文件所对应state初始化.现在用户空间open这个设备了.即要对这个文件进行操作了.那uart_port也要开始工作了.即调用uart_startup()使其进入工作状态.当然,也需要初始化uart_port所对应的环形缓冲区circ_buf.即state->info-> xmit.
    特别要注意,在这里将tty->driver_data = state;这是因为以后的操作只有port相关了,不需要去了解uart_driver的相关信息.
    跟踪看一下里面调用的两个重要的子函数. uart_get()和uart_startup().先分析uart_get().代码如下:
    static struct uart_state *uart_get(struct uart_driver *drv, int line)
    {
         struct uart_state *state;
         int ret = 0;

         state = drv->state + line;
         if (mutex_lock_interruptible(&state->mutex)) {
             ret = -ERESTARTSYS;
             goto err;
         }

         state->count++;
         if (!state->port || state->port->flags & UPF_DEAD) {
             ret = -ENXIO;
             goto err_unlock;
         }

         if (!state->info) {
             state->info = kzalloc(sizeof(struct uart_info), GFP_KERNEL);
             if (state->info) {
                  init_waitqueue_head(&state->info->open_wait);
                  init_waitqueue_head(&state->info->delta_msr_wait);

                  /*
                   * Link the info into the other structures.
                   */
                  state->port->info = state->info;

                  tasklet_init(&state->info->tlet, uart_tasklet_action,
                            (unsigned long)state);
             } else {
                  ret = -ENOMEM;
                  goto err_unlock;
             }
         }
         return state;

    err_unlock:
         state->count--;
         mutex_unlock(&state->mutex);
    err:
         return ERR_PTR(ret);
    }
    //从代码中可以看出.这里注要是操作是初始化state->info.注意port->info就是state->info的一个副本.即port直接通过port->info可以找到它要操作的缓存区.

    //uart_startup()代码如下:
    static int uart_startup(struct tty_struct *tty, struct uart_state *state, int init_hw)
    {
     struct uart_port *uport = state->uart_port;
     struct tty_port *port = &state->port;
     unsigned long page;
     int retval = 0;

     if (port->flags & ASYNC_INITIALIZED)
      return 0;

     /*
      * Set the TTY IO error marker - we will only clear this
      * once we have successfully opened the port.  Also set
      * up the tty->alt_speed kludge
      */
     set_bit(TTY_IO_ERROR, &tty->flags);

     if (uport->type == PORT_UNKNOWN)
      return 0;

     /*
      * Initialise and allocate the transmit and temporary
      * buffer.
      */
     if (!state->xmit.buf) {
      /* This is protected by the per port mutex */
      page = get_zeroed_page(GFP_KERNEL);
      if (!page)
       return -ENOMEM;

      state->xmit.buf = (unsigned char *) page;
      uart_circ_clear(&state->xmit);
     }
     //在这里,注要完成对环形缓冲,即info->xmit的初始化.然后调用port->ops->startup( )将这个port带入到工作状态.
     
     retval = uport->ops->startup(uport);//调用8250.c中的serial8250_startup()函数
     if (retval == 0) {
      if (init_hw) {
       /*
        * Initialise the hardware port settings.
        */
       uart_change_speed(tty, state, NULL);

       /*
        * Setup the RTS and DTR signals once the
        * port is open and ready to respond.
        */
       if (tty->termios->c_cflag & CBAUD)
        uart_set_mctrl(uport, TIOCM_RTS | TIOCM_DTR);
      }

      if (port->flags & ASYNC_CTS_FLOW) {
       spin_lock_irq(&uport->lock);
       if (!(uport->ops->get_mctrl(uport) & TIOCM_CTS))
        tty->hw_stopped = 1;
       spin_unlock_irq(&uport->lock);
      }

      set_bit(ASYNCB_INITIALIZED, &port->flags);

      clear_bit(TTY_IO_ERROR, &tty->flags);
     }

     if (retval && capable(CAP_SYS_ADMIN))
      retval = 0;

     return retval;
    }

    static int serial8250_startup(struct uart_port *port)
    {
        struct uart_8250_port *up = (struct uart_8250_port *)port;
        unsigned long flags;
        unsigned char lsr, iir;
        int retval;
     
         //从结构体uart_config中取得相应的配置
        up->capabilities = uart_config[up->port.type].flags;
        up->mcr = 0;
         
        if (up->port.type == PORT_16C950) {  //这里我们没有调用
          ……………………
        }
    #ifdef CONFIG_SERIAL_8250_RSA
        enable_rsa(up);
    #endif

       //清楚FIFO  buffers并 disable 他们,但会在以后set_termios()函数中,重新使能他们
        serial8250_clear_fifos(up);  

      //复位LSR,RX,IIR,MSR寄存器
        (void) serial_inp(up, UART_LSR);
        (void) serial_inp(up, UART_RX);
        (void) serial_inp(up, UART_IIR);
        (void) serial_inp(up, UART_MSR);

        //若LSR寄存器中的值为0xFF.异常
        if (!(up->port.flags & UPF_BUGGY_UART) &&(serial_inp(up, UART_LSR) == 0xff)) {
            printk("ttyS%d: LSR safety check engaged! ", up->port.line);
            return -ENODEV;
        }

       //16850系列芯片的处理,忽略
        if (up->port.type == PORT_16850) {
      ………………………………………………
        }
        if (is_real_interrupt(up->port.irq)) {
                /*
                 * Test for UARTs that do not reassert THRE when the
                 * transmitter is idle and the interrupt has already
                 * been cleared.  Real 16550s should always reassert
                 * this interrupt whenever the transmitter is idle and
                 * the interrupt is enabled.  Delays are necessary to
                 * allow register changes to become visible.
                 */
                spin_lock_irqsave(&up->port.lock, flags);
                wait_for_xmitr(up, UART_LSR_THRE);
                serial_out_sync(up, UART_IER, UART_IER_THRI);
          udelay(1); /* allow THRE to set */
                serial_in(up, UART_IIR);
                serial_out(up, UART_IER, 0);
                serial_out_sync(up, UART_IER, UART_IER_THRI);
                udelay(1); /* allow a working UART time to re-assert THRE */
                iir = serial_in(up, UART_IIR);
                serial_out(up, UART_IER, 0);
                spin_unlock_irqrestore(&up->port.lock, flags);
                /*
                 * If the interrupt is not reasserted, setup a timer to
                 * kick the UART on a regular basis.
                 */
                if (iir & UART_IIR_NO_INT) {
                        pr_debug("ttyS%d - using backup timer ", port->line);
                        up->timer.function = serial8250_backup_timeout;
                        up->timer.data = (unsigned long)up;
                        mod_timer(&up->timer, jiffies +poll_timeout(up->port.timeout) + HZ/5);
                }
        }
     //如果中断号有效,还要进一步判断这个中断号是否有效.具体操作为,先等待8250发送寄存器空.然后允许发送中断空的中断.然后判断IIR寄存器是否收到中断.
     //如果有没有收到中断,则说明这根中断线无效.只能采用轮询的方式.关于轮询方式,我们在之后再以独立章节的形式给出分析
        if (!is_real_interrupt(up->port.irq)) {
                up->timer.data = (unsigned long)up;
            mod_timer(&up->timer, jiffies + poll_timeout(up->port.timeout));
        } else {
                retval = serial_link_irq_chain(up);//定义串口的中断函数
                if (retval)
                        return retval;
        }
     //如果没有设置中断号,则采用轮询方式;如果中断后有效.流程转入serial_link_irq_chain().在这个里面.会注册中断处理函数
        serial_outp(up, UART_LCR, UART_LCR_WLEN8);  //ULCR.WLS=11,即选择8位
        spin_lock_irqsave(&up->port.lock, flags);
        if (up->port.flags & UPF_FOURPORT) {
                if (!is_real_interrupt(up->port.irq))
                        up->port.mctrl |= TIOCM_OUT1;
        } 
        else
        {
          //Most PC uarts need OUT2 raised to enable interrupts.
         if (is_real_interrupt(up->port.irq))
           up->port.mctrl |= TIOCM_OUT2;
        }
        serial8250_set_mctrl(&up->port, up->port.mctrl);
        /*
         * Do a quick test to see if we receive an
         * interrupt when we enable the TX irq.
         */
        serial_outp(up, UART_IER, UART_IER_THRI);
      lsr = serial_in(up, UART_LSR);
        iir = serial_in(up, UART_IIR);
        serial_outp(up, UART_IER, 0);
        if (lsr & UART_LSR_TEMT && iir & UART_IIR_NO_INT) {
                if (!(up->bugs & UART_BUG_TXEN)) {
                        up->bugs |= UART_BUG_TXEN;
                        pr_debug("ttyS%d - enabling bad tx status workarounds ",port->line);
                }
        } else {
                up->bugs &= ~UART_BUG_TXEN;
        }
        spin_unlock_irqrestore(&up->port.lock, flags);
        /*
         * Finally, enable interrupts.  Note: Modem status interrupts
         * are set via set_termios(), which will be occurring imminently
         * anyway, so we don't enable them here.
         */
        up->ier = UART_IER_RLSI | UART_IER_RDI;
        serial_outp(up, UART_IER, up->ier);
        if (up->port.flags & UPF_FOURPORT) {
                unsigned int icp;
                //Enable interrupts on the AST Fourport board
                icp = (up->port.iobase & 0xfe0) | 0x01f;
              outb_p(0x80, icp);
                (void) inb_p(icp);
        }
        /*
         * And clear the interrupt registers again for luck.
         */
        (void) serial_inp(up, UART_LSR);
        (void) serial_inp(up, UART_RX);
        (void) serial_inp(up, UART_IIR);
        (void) serial_inp(up, UART_MSR);
        return 0;
    }

    四、串口的读
    tty_driver中并末提供read接口.上层的read操作是直接到ldsic的缓存区中读数据的.那ldsic的数据是怎么送入进去的呢?继续看中断处理中的数据接收流程.即为: receive_chars().代码片段如下:
    //这个应该是UART接受数据的函数uart_port结构定义在serial——core.h中
    //port中断函数serial8250_handle_port()调用这个函数:
    static void receive_chars(struct uart_8250_port *up, unsigned int *status)
    {
         ……
         ……
         uart_insert_char(&up->port, lsr, UART_LSR_OE, ch, flag);
    }
    //最后流据会转入uart_inset_char().这个函数是uart层提供的一个接口,代码如下:
    static inline void uart_insert_char(struct uart_port *port, unsigned int status,unsigned int overrun, unsigned int ch, unsigned int flag)
    {
         struct tty_struct *tty = port->info->tty;
     
         if ((status & port->ignore_status_mask & ~overrun) == 0)
             tty_insert_flip_char(tty, ch, flag);
     
         /*
          * Overrun is special.  Since it's reported immediately,
          * it doesn't affect the current character.
          */
         if (status & ~port->ignore_status_mask & overrun)
             tty_insert_flip_char(tty, 0, TTY_OVERRUN);
    }
    //tty_insert_filp()函数数据就直接交给了ldisc.

    读数据时,read()--->调用tty_io.c中的tty_read()--->n_tty.c中的 n_tty_read(),n_tty_read()从ldisc中读取数据。
    五、串口的写
    static const struct file_operations tty_fops = {
     .llseek  = no_llseek,
     .read  = tty_read,
     .write  = tty_write,
     .poll  = tty_poll,
     .unlocked_ioctl = tty_ioctl,
     .compat_ioctl = tty_compat_ioctl,
     .open  = tty_open,
     .release = tty_release,
     .fasync  = tty_fasync,
    };
    写数据时,write()--->调用tty_io.c中的 tty_write()--->调用n_tty.c中的 n_tty_write()--->调用serial_core.c中 uart_write()--->调用serial_core.c中 uart_start()--->__uart_start()--->

    调用serial_core.c中 uart_send_xchar()--->调用8250.c中的写出函数serial8250_start_tx()--->调用8250.c中的transmit_chars()--->调用8250.c中的serial_outp()--->调用8250.c中的mem_serial_out()写出去

  • 相关阅读:
    Linux内核之数据双链表
    程序员必读:Linux内存管理剖析
    大型网站系统架构演化之路
    高流量站点NGINX与PHP-fpm配置优化
    LVS负载均衡集群服务搭建详解(二)
    LVS负载均衡集群服务搭建详解(一)
    安装 openSUSE Leap 42.1 之后要做的 8 件事
    【Linux基础】VI命令模式下删除拷贝与粘贴
    【Linux基础】VI命令模式下大小写转换
    【Linux基础】VI 编辑器基本使用方法
  • 原文地址:https://www.cnblogs.com/sky-heaven/p/5016436.html
Copyright © 2011-2022 走看看