zoukankan      html  css  js  c++  java
  • 内核随记(三)--同步(2)【转】

    转自:http://blog.csdn.net/tommy_wxie/article/details/7425668

    版权声明:本文为博主原创文章,未经博主允许不得转载。
    2.2、睡眠与唤醒
    在操作系统中,睡眠和唤醒原语实际上是操作系统的基本原语,也是实现同步的一种方式,而且它还是实现信号量的基础。当进程请求的资源(如内存、文件等)不能得到满足时,就会主动放弃CPU,进入等待状态(可中断等待或者不可中断等待)。当资源满足时,就会由别的进程唤醒,从而投入运行。
    2.2.1、等待队列
    等待队列表示一组睡眠的进程,这些进程正在等待特定的事件发生(或者说条件为真),比如,等待足够的内存。等待队列是一个双链表,每个队列都有一个队列头,其定义如下:
    [html] view plain copy print?
    //include/linux/wait.h  
    //等待队列头  
    struct __wait_queue_head {  
          // 自旋锁  
        spinlock_t lock;  
        struct list_head task_list;  
    };  
    typedef struct __wait_queue_head wait_queue_head_t;  
    
    等待队列链表中的元素类型为:
    [html] view plain copy print?
    typedef struct __wait_queue wait_queue_t;  
    //唤醒函数指针  
    typedef int (*wait_queue_func_t)(wait_queue_t *wait, unsigned mode, int sync, void *key);  
    //默认的唤醒函数  
    int default_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key);  
      
    struct __wait_queue {  
        /*取值为WQ_FLAG_EXCLUSIVE(=1)表示互斥进程,由内核有选择的唤醒.为0时表示非互斥进程,由内核在  
        **事件发生时唤醒所有等待进程.  
        **/  
        unsigned int flags;  
    #define WQ_FLAG_EXCLUSIVE    0x01  
        //等待的任务描述符  
        struct task_struct * task;  
      
        //唤醒函数,默认为default_wake_function  
        wait_queue_func_t func;  
        struct list_head task_list;  
    };  
    
    其典型的结构如下:
    
    等待队列头的初始化:
    DECLARE_WAIT_QUEUE_HEAD(name);
    其定义如下:
    [html] view plain copy print?
    //incude/linux/wait.h  
    #define __WAIT_QUEUE_HEAD_INITIALIZER(name) {                  
        .lock        = SPIN_LOCK_UNLOCKED,                  
        .task_list    = { &(name).task_list, &(name).task_list } }  
      
    //初始化等待队列头  
    #define DECLARE_WAIT_QUEUE_HEAD(name)   
        wait_queue_head_t name = __WAIT_QUEUE_HEAD_INITIALIZER(name)  
    
    或者如下:
    wait_queue_head_t my_queue; 
    init_waitqueue_head(&my_queue);
    
    等待队列元素初始化:
    //linux/wait.h
    //wait_queue_t初始化
    static inline void init_waitqueue_entry(wait_queue_t *q, struct task_struct *p)
    {
        q->flags = 0;
        q->task = p;
        q->func = default_wake_function;
    }
    2.2.2、等待事件(Waiting on the Event)
    内核提供的等待接口包括wait_event(), wait_event_ interruptible(), 和wait_event_interruptible_timeout()。此外sleep_on(), sleep_on_timeout(), 和interruptible_sleep_on()在2.6中仍然支持,但已经过时。这些接口的基本实现如下:
    
    具体代码如下:
    [html] view plain copy print?
    //linux/wait.h  
    #define wait_event(wq, condition)                       
    do {                                      
        if (condition)    //条件发生                           
            break;                              
        __wait_event(wq, condition);                      
    } while (0)  
      
    #define __wait_event(wq, condition)                       
    do {                                      
        DEFINE_WAIT(__wait);                          
                                          
        for (;;) {                              
            prepare_to_wait(&wq, &__wait, TASK_UNINTERRUPTIBLE);      
            if (condition)                          
                break;                          
            schedule();//调度                          
        }                                  
        finish_wait(&wq, &__wait);                      
    } while (0)  
      
    //kernel/wait.c  
    void fastcall  
    prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)  
    {  
        unsigned long flags;  
        //非互斥进程  
        wait->flags &= ~WQ_FLAG_EXCLUSIVE;  
        //关中断,并请求自旋锁  
        spin_lock_irqsave(&q->lock, flags);  
        if (list_empty(&wait->task_list))  
            __add_wait_queue(q, wait);  //将等待任务加入等待队列  
        /*  
         * don't alter the task state if this is just going to  
         * queue an async wait queue callback  
         */  
        if (is_sync_wait(wait))  
            set_current_state(state);  //设置任务当前的状态  
        //释放自旋锁,并恢复处理器状态  
        spin_unlock_irqrestore(&q->lock, flags);  
    }  
      
    //等待完成之后,应该设置任务的状态为运行状态,并从等待队列中删除  
    void fastcall finish_wait(wait_queue_head_t *q, wait_queue_t *wait)  
    {  
        unsigned long flags;  
      
        __set_current_state(TASK_RUNNING); //设置为运行状态  
          
        if (!list_empty_careful(&wait->task_list)) {  
            spin_lock_irqsave(&q->lock, flags);  
            list_del_init(&wait->task_list);    //从等待队列中删除  
            spin_unlock_irqrestore(&q->lock, flags);  
        }  
    }  
    
    2.2.3、唤醒(Waking Up)
    接口如下:
    [html] view plain copy print?
    //include/inux/wait.h  
    #define wake_up(x)            __wake_up(x, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 1, NULL)  
    #define wake_up_nr(x, nr)        __wake_up(x, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, nr, NULL)  
    #define wake_up_all(x)            __wake_up(x, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 0, NULL)  
    #define wake_up_interruptible(x)    __wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)  
    #define wake_up_interruptible_nr(x, nr)    __wake_up(x, TASK_INTERRUPTIBLE, nr, NULL)  
    #define wake_up_interruptible_all(x)    __wake_up(x, TASK_INTERRUPTIBLE, 0, NULL)  
    #define    wake_up_locked(x)        __wake_up_locked((x), TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE)  
    #define wake_up_interruptible_sync(x)   __wake_up_sync((x),TASK_INTERRUPTIBLE, 1)  
    
    具体实现:
    [html] view plain copy print?
    //kernel/sched.c  
    void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,  
                    int nr_exclusive, void *key)  
    {  
        unsigned long flags;  
        //请求自旋锁,并关中断  
        spin_lock_irqsave(&q->lock, flags);  
        __wake_up_common(q, mode, nr_exclusive, 0, key);  
        spin_unlock_irqrestore(&q->lock, flags);  
    }  
    static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,  
                     int nr_exclusive, int sync, void *key)  
    {  
        struct list_head *tmp, *next;  
      
        list_for_each_safe(tmp, next, &q->task_list) {  
            wait_queue_t *curr;  
            unsigned flags;  
            curr = list_entry(tmp, wait_queue_t, task_list);  
            flags = curr->flags;  
            //调用相应的唤醒函数, 唤醒第1个有WQ_FLAG_EXCLUSIVE标志的进程后停止  
            if (curr->func(curr, mode, sync, key) &&  
                (flags & WQ_FLAG_EXCLUSIVE) &&  
                !--nr_exclusive)  
                break;  
        }  
    }  
    //默认的唤醒函数  
    int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)  
    {  
        task_t *p = curr->task;  
        return try_to_wake_up(p, mode, sync);  
    }  
    
    try_to_wake_up是唤醒原语中核心部分,其具体代码如下:
    [html] view plain copy print?
    /*p被唤醒的进程描述符.  
    **state被唤醒的进程的状态掩码  
    **sync禁止被唤醒的进程抢占本地CPU正在运行的进程  
    */  
    static int try_to_wake_up(task_t * p, unsigned int state, int sync)  
    {  
        int cpu, this_cpu, success = 0;  
        unsigned long flags;  
        long old_state;  
        runqueue_t *rq;  
    #ifdef CONFIG_SMP  
        unsigned long load, this_load;  
        struct sched_domain *sd;  
        int new_cpu;  
    #endif  
        //关闭中断,并获取最后执行该进程的CPU(可能不同于本地CPU)的运行队列的锁  
        rq = task_rq_lock(p, &flags);  
        schedstat_inc(rq, ttwu_cnt);  
        old_state = p->state;  
        if (!(old_state & state))  
            goto out;  
      
        if (p->array)  
            goto out_running;  
          
        //最后执行该任务的CPU  
        cpu = task_cpu(p);  
        //本地CPU  
        this_cpu = smp_processor_id();  
          
    /*对于多CPU系统,检查要被唤醒的进程是否应该从最近执行该进程的CPU的运行队列,  
    **转移到另外一个CPU的运行队列.  
    */  
    #ifdef CONFIG_SMP  
        if (unlikely(task_running(rq, p)))  
            goto out_activate;  
      
        new_cpu = cpu;  
      
        if (cpu == this_cpu || unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))  
            goto out_set_cpu;  
      
        load = source_load(cpu);  
        this_load = target_load(this_cpu);  
      
        /*  
         * If sync wakeup then subtract the (maximum possible) effect of  
         * the currently running task from the load of the current CPU:  
         */  
        if (sync)  
            this_load -= SCHED_LOAD_SCALE;  
      
        /* Don't pull the task off an idle CPU to a busy one */  
        if (load < SCHED_LOAD_SCALE/2 && this_load > SCHED_LOAD_SCALE/2)  
            goto out_set_cpu;  
      
        new_cpu = this_cpu; /* Wake to this CPU if we can */  
      
        /*  
         * Scan domains for affine wakeup and passive balancing  
         * possibilities.  
         */  
        for_each_domain(this_cpu, sd) {  
            unsigned int imbalance;  
            /*  
             * Start passive balancing when half the imbalance_pct  
             * limit is reached.  
             */  
            imbalance = sd->imbalance_pct + (sd->imbalance_pct - 100) / 2;  
      
            if ((sd->flags & SD_WAKE_AFFINE) &&  
                    !task_hot(p, rq->timestamp_last_tick, sd)) {  
                /*  
                 * This domain has SD_WAKE_AFFINE and p is cache cold  
                 * in this domain.  
                 */  
                if (cpu_isset(cpu, sd->span)) {  
                    schedstat_inc(sd, ttwu_wake_affine);  
                    goto out_set_cpu;  
                }  
            } else if ((sd->flags & SD_WAKE_BALANCE) &&  
                    imbalance*this_load <= 100*load) {  
                /*  
                 * This domain has SD_WAKE_BALANCE and there is  
                 * an imbalance.  
                 */  
                if (cpu_isset(cpu, sd->span)) {  
                    schedstat_inc(sd, ttwu_wake_balance);  
                    goto out_set_cpu;  
                }  
            }  
        }  
      
        new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */  
    out_set_cpu:  
        schedstat_inc(rq, ttwu_attempts);  
        new_cpu = wake_idle(new_cpu, p);  
        if (new_cpu != cpu && cpu_isset(new_cpu, p->cpus_allowed)) {  
            schedstat_inc(rq, ttwu_moved);  
            set_task_cpu(p, new_cpu);  
            task_rq_unlock(rq, &flags);  
            /* might preempt at this point */  
            rq = task_rq_lock(p, &flags);  
            old_state = p->state;  
            if (!(old_state & state))  
                goto out;  
            if (p->array)  
                goto out_running;  
      
            this_cpu = smp_processor_id();  
            cpu = task_cpu(p);  
        }  
      
    out_activate:  
    #endif /* CONFIG_SMP */  
        if (old_state == TASK_UNINTERRUPTIBLE) {  
            rq->nr_uninterruptible--;  
            /*  
             * Tasks on involuntary sleep don't earn  
             * sleep_avg beyond just interactive state.  
             */  
            p->activated = -1;  
        }  
      
        /*  
         * Sync wakeups (i.e. those types of wakeups where the waker  
         * has indicated that it will leave the CPU in short order)  
         * don't trigger a preemption, if the woken up task will run on  
         * this cpu. (in this case the 'I will reschedule' promise of  
         * the waker guarantees that the freshly woken up task is going  
         * to be considered on this CPU.)  
         */  
         //将进程p加入目标CPU的可运行队列  
        activate_task(p, rq, cpu == this_cpu);  
        /*如果没有设置sync标志(表示允许抢占),且目标CPU不是本地CPU,则检查p是否比rq运行队列中当前进程的动态优先级高.  
        **即(p)->prio < (rq)->curr->prio,如果是,则调用resched_task()抢占rq->curr。  
        */  
        if (!sync || cpu != this_cpu) {  
            if (TASK_PREEMPTS_CURR(p, rq))  
                /*在单CPU中,仅仅设置TIF_NEED_RESCHED标志.多CPU系统中,则检查相应标志,并使目标CPU重新调度  
                */  
                resched_task(rq->curr);  
        }  
        success = 1;  
      
    out_running:  
        //设置进程的状态  
        p->state = TASK_RUNNING;  
    out:  
        //释放rq的锁,并打开本地中断  
        task_rq_unlock(rq, &flags);  
      
        return success;  
    }  
      
    #ifdef CONFIG_SMP  
    //多CPU系统  
    static void resched_task(task_t *p)  
    {  
        int need_resched, nrpolling;  
      
        BUG_ON(!spin_is_locked(&task_rq(p)->lock));  
      
        /* minimise the chance of sending an interrupt to poll_idle() */  
        nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);  
        need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);  
        nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);  
          
        if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))  
            //产生IPI,强制目标CPU重新调度  
            smp_send_reschedule(task_cpu(p));  
    }  
    #else  
    //单CPU系统  
    static inline void resched_task(task_t *p)  
    {  
        set_tsk_need_resched(p);  
    }  
    #endif  
    
    2.2.4、互斥等待
    当调用wake_up唤醒等待队列时,等待队列上的所有进程都转置为可运行。在一些情况下,这种做法是正确的,比如等待某个特定的事件。但是在另外一些情况,可以提前知道只有一个被唤醒的进程能够成功的获取资源,比如等待临界区资源,其它的进程将再次睡眠。如果等待队列中的进程数量太大,将会严重影响系统性能,这就是所谓的thundering herd行为。为此,内核引入互斥等待,它与非互斥等待的区别如下:
    (1) 当一个等待队列入口有 WQ_FLAG_EXCLUSEVE 标志置位, 它被添加到等待队列的尾部. 没有这个标志的入口项, 相反, 添加到开始。
    (2) 当 wake_up 被在一个等待队列上调用, 它在唤醒第一个有 WQ_FLAG_EXCLUSIVE 标志的进程后停止。
    这样,进行互斥等待的进程一次只唤醒一个。使一个进程进入互斥等待是调用prepare_to_wait_exclusive完成的。
    [html] view plain copy print?
    //kernel/wait.c  
    void fastcall  
    prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)  
    {  
        unsigned long flags;  
        //互斥标志  
        wait->flags |= WQ_FLAG_EXCLUSIVE;  
        spin_lock_irqsave(&q->lock, flags);  
        if (list_empty(&wait->task_list))  
            __add_wait_queue_tail(q, wait);  
        /*  
         * don't alter the task state if this is just going to  
          * queue an async wait queue callback  
         */  
        if (is_sync_wait(wait))  
            set_current_state(state);  
        spin_unlock_irqrestore(&q->lock, flags);  
    }  
  • 相关阅读:
    正则表达式复习 (?<=) (?=)
    HTML 30分钟入门教程
    C# 多线程详解
    C# List
    C# 枚举
    C# 线程数
    C# 泛型2
    C# 泛型
    C# 结构体
    不用Google Adsense的84个赚钱方法
  • 原文地址:https://www.cnblogs.com/sky-heaven/p/5945877.html
Copyright © 2011-2022 走看看