1. 概括统计 summary statistics
MLlib
支持RDD[Vector]
列式的概括统计,它通过调用 Statistics
的 colStats
方法实现。
colStats
返回一个 MultivariateStatisticalSummary
对象,这个对象包含列式的最大值、最小值、均值、方差等等。
import org.apache.spark.mllib.linalg.Vector import org.apache.spark.mllib.stat.{MultivariateStatisticalSummary, Statistics} val observations: RDD[Vector] = ... // define an RDD of Vectors
// Compute column summary statistics. val summary: MultivariateStatisticalSummary = Statistics.colStats(observations) println(summary.mean) // a dense vector containing the mean value for each column println(summary.variance) // column-wise variance println(summary.numNonzeros) // number of nonzeros in each column
2. 相关性 correlations
1) 基础回顾
协方差:两个变量总体误差的期望。
方差是一种特殊的协方差,即两个变量相等时。
所以方差 D(X)=E[X2]-(E(X))2
相关系数:用以反映变量之间相关关系密切程度的统计指标。
其中Cov(X,Y) 是X与Y的协方差,D(X),D(Y) 为其方差。
2)相关性系数的计算
计算两个数据集的相关性是统计中的常用操作,目前Mlib里面支持的有两种:皮尔森(Pearson
)相关和斯皮尔曼(Spearman
)相关。
Statistics
提供方法计算数据集的相关性。根据输入的类型,两个RDD[Double]
或者一个RDD[Vector]
,输出将会是一个Double
值或者相关性矩阵。
import org.apache.spark.SparkContext import org.apache.spark.mllib.linalg._ import org.apache.spark.mllib.stat.Statistics val sc: SparkContext = ...
val seriesX: RDD[Double] = ... // a series val seriesY: RDD[Double] = ... // must have the same number of partitions and cardinality as seriesX val correlation: Double = Statistics.corr(seriesX, seriesY, "pearson")
val data: RDD[Vector] = ... // note that each Vector is a row and not a column val correlMatrix: Matrix = Statistics.corr(data, "pearson")
在上面输入 "pearson" 和"spearman" ,就会计算不同的系数。
3) Pearson 和Spearman相关系数
Pearson 就是我们平时学到的(是矩相关的一种)。
但有限制条件:
- 首先,必须假设数据是成对地从正态分布中取得的;
- 其次,数据至少在逻辑范围内是等距的。
Spearman相关系数,可以操作不服从正态分布的数据集。也就是秩相关(等级相关)的一种。
它是排序变量(ranked variables
)之间的皮尔逊相关系数: 即对于大小为n
的样本集,将原始的数据X_i
和Y_i
转换成排序变量rgX_i
和rgY_i
,再计算皮尔逊相关系数。
3. 分层取样
- 分层抽样法也叫类型抽样法。它是从一个可以分成不同子总体(或称为层)的总体中,按规定的比例从不同层中随机抽取样品(个体)的方法。
- 在
spark.mllib
中,用key
来分层。 - 分层采样方法
sampleByKey
和sampleByKeyExact
可以在key-value
对的RDD
上执行
sampleByKey :
通过掷硬币的方式决定是否采样一个观察数据, 因此它需要我们传递(pass over
)数据并且提供期望的数据大小(size
)。
sampleByKeyExact :允许用户准确抽取
f_k * n_k
个样本, 这里f_k
表示期望获取键为k
的样本的比例,n_k
表示键为k
的键值对的数量。
比每层使用
sampleByKey
随机抽样需要更多的有意义的资源,但是它能使样本大小的准确性达到了99.99%
。
import org.apache.spark.SparkContext import org.apache.spark.SparkContext._ import org.apache.spark.rdd.PairRDDFunctions val sc: SparkContext = ... val data = ... // an RDD[(K, V)] of any key value pairs val fractions: Map[K, Double] = ... // specify the exact fraction desired from each key // Get an exact sample from each stratum val approxSample = data.sampleByKey(withReplacement = false, fractions) val exactSample = data.sampleByKeyExact(withReplacement = false, fractions)
基础回顾:
泊松分布 Poission分布
期望和方差均为 λ.
伯努利分布即二项分布
期望是np,方差是np(1-p)
当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧10,p≦0.1时,就可以用泊松公式近似得计算。
重复抽样用泊松,不重复抽样用伯努利。