zoukankan      html  css  js  c++  java
  • GraphX 的属性图

    package main.scala
    
    import org.apache.spark.graphx.{Edge, Graph, VertexId}
    import org.apache.spark.rdd.RDD
    import org.apache.spark.{SparkConf, SparkContext}
    
    object graph_test {
      
      // define hadoop_home directory
      System.setProperty("hadoop.home.dir","E:/zhuangji/winutil/")
    
      def main(args:Array[String]):Unit={
    
        val conf=new SparkConf().setMaster("local[2]").setAppName("graph_test")
        val sc=new SparkContext(conf)
    
        // VertexRDD & EdgeRDD to build graph
        val users:RDD[(VertexId,(String,String))]=
          sc.parallelize(Array((3L,("rxin","student")),(7L,("jgonzal","postdoc")),
                              (5L,("franklin","prof")),(2L,("istoica","prof"))))
        val relationships:RDD[Edge[String]]=
          sc.parallelize(Array(Edge(3L,7L,"collab"),Edge(5L,3L,"advisor"),
                               Edge(2L,5L,"colleague"),Edge(5L,7L,"pi")))
    
        val defaultUser=("John Doe","Missing")
    
        val graph=Graph(users,relationships,defaultUser)
    
        // graph.vertices & graph.edges to query graph
        println(graph.vertices.filter{case (id,(name,pos))=>pos=="prof"}.count)
    
        println(graph.edges.filter{case Edge(s,d,r)=>s<d}.count)  // 两者
        println(graph.edges.filter(e=>e.srcId<e.dstId).count)  // 等价
        
        // 三元组视图 graph.triplets could also query a graph
        val facts:RDD[String]=
          graph.triplets.map(triplet=>
             triplet.srcAttr._1 + " is the " + triplet.attr + " of " + triplet.dstAttr._1)
        facts.collect.foreach(println(_))
    
      }
    
    }
    

      

  • 相关阅读:
    基于vite2的react脚手架
    基于react hooks,zarm组件库配置开发h5表单页面
    IDEA远程debug
    test wizdeploy
    使用python完成接口自动化
    测试左移和测试右移
    性能测试监控
    网络基础面试题
    (案例8)java性能定位
    Jmeter分布式测试
  • 原文地址:https://www.cnblogs.com/skyEva/p/5900183.html
Copyright © 2011-2022 走看看