zoukankan      html  css  js  c++  java
  • [Machine Learning]感知机(Perceptron)

    感知机具体说明:见《统计学习方法第二章》。

    实现(scikit-learn):

    数据集

     1 import numpy as np
     2 import matplotlib.pyplot as plt
     3 from sklearn.linear_model import perceptron
     4 
     5 # Data
     6 d = np.array([
     7     [2, 1, 2, 5, 7, 2, 3, 6, 1, 2, 5, 4, 6, 5],
     8     [2, 3, 3, 3, 3, 4, 4 ,4 , 5, 5, 5, 6, 6, 7]
     9     ])
    10 
    11 # Labels
    12 t = np.array([0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1])
    13 
    14 # plot the data
    15 colormap = np.array(['r', 'k'])
    16 plt.scatter(d[0], d[1], c = colormap[t], s = 40)
    17 plt.show()

    数据集表示:

    处理数据用坐标表示:

    1 # rotate the data 180 degrees
    2 d90 = np.rot90(d)
    3 d90 = np.rot90(d90)
    4 d90 = np.rot90(d90)
    1 # # create the model
    2 net = perceptron.Perceptron(n_iter = 100, verbose = 0, random_state = None, fit_intercept = True, eta0 = 0.002)
    3 net.fit(d90, t)
    4 
    5 # # print the results
    6 print "Prediction" + str(net.predict(d90))
    7 print "Actual    " + str(t)
    8 print "Accuracy  " + str(net.score(d90, t) * 100) + "%"

     

    测试模型:

     1 nX = np.random.random_integers(10, size=(2, 50))
     2 
     3 # Rotate it the same as the previous data 
     4 nX90 = np.rot90(nX)
     5 nX90 = np.rot90(nX90)
     6 nX90 = np.rot90(nX90)
     7 
     8 # # set predication as the predication results
     9 predication = net.predict(nX90)
    10 
    11 # # Print to have a look 
    12 print predication
    13 plt.scatter(nX[0], nX[1], c = colormap[predication], s = 40)
    14 
    15 # now plot the hyperplane
    16 ymin, ymax = plt.ylim()
    17 # # cal
    18 w = net.coef_[0]
    19 a = -w[0] / w[1]
    20 xx = np.linspace(ymin, ymax)
    21 yy = a * xx - (net.intercept_[0])/ w[1]
    22 plt.plot(yy, xx, 'k-')
    23 plt.show()

    C++描述:

     1 /**
     2  *  求两个向量的内积
     3  *
     4  *  @param lhs 向量1
     5  *  @param rhs 向量2
     6  *
     7  *  @return 内积
     8  */
     9 int product(const vector<int> &lhs, const vector<int> &rhs) {
    10     int result = 0;
    11     for (int i = 0; i < lhs.size() - 1; ++i) {
    12         result += lhs[i] * rhs[i];
    13     }
    14     
    15     return result;
    16 }
    17 
    18 /**
    19  *  感知机, 原始形式
    20  *
    21  *  @param dataSet 数据集
    22  *
    23  *  @return 返回结果(w, b)
    24  */
    25 vector<int> perceptron(const vector<vector<int>> &dataSet) {
    26     if (dataSet.size() == 0) {
    27         return vector<int>();
    28     }
    29     
    30     auto len = dataSet[0].size();
    31     vector<int> w_b(len, 0);
    32     int n = 1;
    33     while (true) {
    34         bool finished = true;
    35         for (auto &ix : dataSet) {
    36             int y = ix[len - 1];
    37             if (y *  (product(ix, w_b) + w_b[len - 1]) <= 0) {
    38                 for (auto j = 0; j < len - 1; ++j) {
    39                     w_b[j] += n * y * ix[j];
    40                 }
    41                 w_b[len - 1] += n * y;
    42                 finished = false;
    43             }
    44         }
    45         
    46         if (finished) {
    47             break;
    48         }
    49     }
    50     
    51     return w_b;
    52 }
     1 /**
     2  *  感知机,对偶形式
     3  *
     4  *  @param dataSet 数据集
     5  *
     6  *  @return 结果
     7  */
     8 vector<int> perceptron_s(const vector<vector<int>> &dataSet) {
     9     // 计算Gram矩阵
    10     vector<vector<int>> gram;
    11     for (auto &i :  dataSet) {
    12         vector<int> tmp;
    13         for (auto &j : dataSet) {
    14             tmp.push_back(product(i, j));
    15         }
    16         gram.push_back(tmp);
    17     }
    18     
    19     vector<int> a(dataSet.size(), 0);
    20     int b = 0;
    21     int n = 0.8;
    22     
    23     auto len = dataSet[0].size();
    24     while (true) {
    25         bool finished = true;
    26         for (int i = 0; i < dataSet.size(); ++i) {
    27             int sum = 0;
    28             for (int j = 0; j < dataSet.size(); ++j) {
    29                 int yj = dataSet[j][len - 1];
    30                 sum += a[i] * gram[i][j] * yj;
    31             }
    32             
    33             int yi = dataSet[i][len - 1];
    34             if (yi *(sum + b) <= 0) {
    35                 a[i] += n;
    36                 b += n * yi;
    37                 finished = false;
    38                 cout << a[0] << " " << a[1] << " " << a[2] << " " << b << endl;
    39             }
    40         }
    41         
    42         if (finished) {
    43             break;
    44         }
    45     }
    46     
    47     vector<int> w_b;
    48     for (int i = 0; i < dataSet.size(); ++i) {
    49         int tmp = 0;
    50         for (int j = 0; j < dataSet.size(); ++j) {
    51             tmp += dataSet[i][j] * a[j];
    52         }
    53         w_b.push_back(tmp);
    54     }
    55     
    56     w_b.push_back(b);
    57     return w_b;
    58 }
  • 相关阅读:
    servlet描述
    利用uuid生成8位随机数
    使用cxf将wsdl生成java代码
    nn.ConvTranspose2d的参数output_padding的作用
    CNN 逆卷积(fractionally-strided convolutions)
    梯度消失 梯度爆炸
    CNN 卷积神经网络中的 接受视野(Receptive Field)
    加下标 上标
    图形操作
    Python中打开文件的方式(With open)
  • 原文地址:https://www.cnblogs.com/skycore/p/5096145.html
Copyright © 2011-2022 走看看