zoukankan      html  css  js  c++  java
  • UVa 11490 Just Another Problem

    方法:数学 整除

    根据推导发现新的方阵长为2*x+3*d, 宽为 x+2*d, 面积满足方程 (2*x+3*d)*(x+2*d) = S + 2*x*x。 (d为thickness)

    (比较合理的方法)

    继而得到 x = (S-6*d*d)/(7*d) 枚举d即可。

    code:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <iostream>
    #include <string>
    #include <vector>
    #include <stack>
    #include <bitset>
    #include <cstdlib>
    #include <cmath>
    #include <set>
    #include <list>
    #include <deque>
    #include <map>
    #include <queue>
    #include <fstream>
    #include <cassert>
    #include <unordered_map>
    #include <cmath>
    #include <sstream>
    #include <time.h>
    #include <complex>
    #define Max(a,b) ((a)>(b)?(a):(b))
    #define Min(a,b) ((a)<(b)?(a):(b))
    #define FOR(a,b,c) for (int (a)=(b);(a)<(c);++(a))
    #define FORN(a,b,c) for (int (a)=(b);(a)<=(c);++(a))
    #define DFOR(a,b,c) for (int (a)=(b);(a)>=(c);--(a))
    #define FORSQ(a,b,c) for (int (a)=(b);(a)*(a)<=(c);++(a))
    #define FORC(a,b,c) for (char (a)=(b);(a)<=(c);++(a))
    #define FOREACH(a,b) for (auto &(a) : (b))
    #define rep(i,n) FOR(i,0,n)
    #define repn(i,n) FORN(i,1,n)
    #define drep(i,n) DFOR(i,n-1,0)
    #define drepn(i,n) DFOR(i,n,1)
    #define MAX(a,b) a = Max(a,b)
    #define MIN(a,b) a = Min(a,b)
    #define SQR(x) ((LL)(x) * (x))
    #define Reset(a,b) memset(a,b,sizeof(a))
    #define fi first
    #define se second
    #define mp make_pair
    #define pb push_back
    #define all(v) v.begin(),v.end()
    #define ALLA(arr,sz) arr,arr+sz
    #define SIZE(v) (int)v.size()
    #define SORT(v) sort(all(v))
    #define REVERSE(v) reverse(ALL(v))
    #define SORTA(arr,sz) sort(ALLA(arr,sz))
    #define REVERSEA(arr,sz) reverse(ALLA(arr,sz))
    #define PERMUTE next_permutation
    #define TC(t) while(t--)
    #define forever for(;;)
    #define PINF 1000000000000
    #define newline '
    '
    
    #define test if(1)if(0)cerr
    using namespace std;
      using namespace std;
    typedef vector<int> vi;
    typedef vector<vi> vvi;
    typedef pair<int,int> ii;
    typedef pair<double,double> dd;
    typedef pair<char,char> cc;
    typedef vector<ii> vii;
    typedef long long ll;
    typedef unsigned long long ull;
    typedef pair<ll, ll> l4;
    const double pi = acos(-1.0);
    
    const int mod = 100000007;
    const string str = "Possible Missing Soldiers = ", no = "No Solution Possible";
    
    int main()
    {
        ios::sync_with_stdio(false);
        cin.tie(0);
        ll s;
        while (cin >> s && s)
        {
            vector<ll> ans;
            for (ll d = 1; d*d*6 < s; ++d)
            {
                ll x = s - 6*d*d;
                if (x % (7*d)) continue;
                x /= 7*d;
                ans.pb((x%mod)*(x%mod)*2%mod);
            }
            if (ans.size() == 0)
                cout << no << newline;
            else
            {
                rep(i, ans.size())
                cout << str << ans[i] << newline;
            }
            cout << newline;
        }
    }
    

      

    (我的傻方法)

    利用求根公式,得到d的解为((49*x*x+24*S)^0.5 - 7*x)/12。

    可以观察到,当x足够大时,49*x*x+24*S 无法构成一个平方数((7*x+1)^2 - (7*x)^2 = 14*x, 相邻的两个平方数的距离是不断增加的,当14*x > 24*S且S大于0时,49*x*x+24*S 不可能使平方数)。

    所以 设 (7*x + a) = (49*x*x+24*S)^0.5, 枚举a。 注意 (7x+a)^2 - (7*x)^2 = a * (14x+a) = 24*S。 所以 a*a < 24*S, a < (24*S)^0.5 < 5e6, 可以接受。然后可以发现,d的解为((49*x*x+24*S)^0.5 - 7*x)/12 = (7*x+a - 7*x)/12 = a/12, 枚举 a的时候可以只枚举大于零 12的倍数,枚举的数量不超过 5e6/12, 对于1e3个testcase,时效足够了。

    code: 

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <iostream>
    #include <string>
    #include <vector>
    #include <stack>
    #include <bitset>
    #include <cstdlib>
    #include <cmath>
    #include <set>
    #include <list>
    #include <deque>
    #include <map>
    #include <queue>
    #include <fstream>
    #include <cassert>
    #include <unordered_map>
    #include <cmath>
    #include <sstream>
    #include <time.h>
    #include <complex>
    #define Max(a,b) ((a)>(b)?(a):(b))
    #define Min(a,b) ((a)<(b)?(a):(b))
    #define FOR(a,b,c) for (int (a)=(b);(a)<(c);++(a))
    #define FORN(a,b,c) for (int (a)=(b);(a)<=(c);++(a))
    #define DFOR(a,b,c) for (int (a)=(b);(a)>=(c);--(a))
    #define FORSQ(a,b,c) for (int (a)=(b);(a)*(a)<=(c);++(a))
    #define FORC(a,b,c) for (char (a)=(b);(a)<=(c);++(a))
    #define FOREACH(a,b) for (auto &(a) : (b))
    #define rep(i,n) FOR(i,0,n)
    #define repn(i,n) FORN(i,1,n)
    #define drep(i,n) DFOR(i,n-1,0)
    #define drepn(i,n) DFOR(i,n,1)
    #define MAX(a,b) a = Max(a,b)
    #define MIN(a,b) a = Min(a,b)
    #define SQR(x) ((LL)(x) * (x))
    #define Reset(a,b) memset(a,b,sizeof(a))
    #define fi first
    #define se second
    #define mp make_pair
    #define pb push_back
    #define all(v) v.begin(),v.end()
    #define ALLA(arr,sz) arr,arr+sz
    #define SIZE(v) (int)v.size()
    #define SORT(v) sort(all(v))
    #define REVERSE(v) reverse(ALL(v))
    #define SORTA(arr,sz) sort(ALLA(arr,sz))
    #define REVERSEA(arr,sz) reverse(ALLA(arr,sz))
    #define PERMUTE next_permutation
    #define TC(t) while(t--)
    #define forever for(;;)
    #define PINF 1000000000000
    #define newline '
    '
    
    #define test if(1)if(0)cerr
    using namespace std;
      using namespace std;
    typedef vector<int> vi;
    typedef vector<vi> vvi;
    typedef pair<int,int> ii;
    typedef pair<double,double> dd;
    typedef pair<char,char> cc;
    typedef vector<ii> vii;
    typedef long long ll;
    typedef unsigned long long ull;
    typedef pair<ll, ll> l4;
    const double pi = acos(-1.0);
    
    const int mod = 100000007;
    const string str = "Possible Missing Soldiers = ", no = "No Solution Possible";
    
    int main()
    {
        ios::sync_with_stdio(false);
        cin.tie(0);
        ll s;
        while (cin >> s && s)
        {
            vector<ll> ans;
            ll bound = sqrt(24*s+0.5);
            for (ll a = 12; a <= bound; a += 12)
            {
                if (24*s%a != 0) continue;
                ll x = 24*s/a-a;
                if (x % 14 != 0) continue;
                x /= 14;
                if (x == 0) continue;
                ans.pb((x%mod)*(x%mod)*2%mod);
            }
            if (ans.size() == 0)
                cout << no << newline;
            else
            {
                rep(i, ans.size())
                cout << str << ans[i] << newline;
            }
            cout << newline;
        }
    }
    

      

  • 相关阅读:
    物联网解决方案
    热门研究方向
    LC滤波器简单设计法
    LC滤波电路分析,LC滤波电路原理及其时间常数的计算
    ams1117资料汇总
    杂项
    关于天线长度及LC值的计算
    稳压二极管、肖特基二极管、静电保护二极管、TVS管
    SPI、I2C、I2S、UART、GPIO、SDIO、CAN、JTAG的区别及使用方法。
    单片机串口通信电平不匹配的解决电路,5V 3.3V串口通讯
  • 原文地址:https://www.cnblogs.com/skyette/p/6357314.html
Copyright © 2011-2022 走看看