zoukankan      html  css  js  c++  java
  • poj 2689 Prime Distance(区间筛选素数)

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 9944   Accepted: 2677

    Description

    The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers.  Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

    Input

    Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

    Output

    For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

    Sample Input

    2 17
    14 17
    

    Sample Output

    2,3 are closest, 7,11 are most distant.
    There are no adjacent primes.
    

    Source

     
    用long long 才过啊!!!
     
     
     
     1 #include <stdio.h>
     2 #include <string.h>
     3 #include <math.h>
     4 #include<algorithm>
     5 using namespace std;
     6 typedef long long ll;
     7 const int N=50000; 
     8 int cnt,p[N+10],flag[N+10];
     9 void get_prime()
    10 {
    11     int i,j;
    12     for(i=2;i<N;i++)
    13     {
    14         if(!flag[i])
    15             p[cnt++]=i;;
    16         for(j=0;j<cnt&&p[j]*i<N;j++)
    17         {
    18             flag[i*p[j]]=1;
    19             if(i%p[j]==0)
    20                 break;
    21         }
    22     }
    23 }
    24 
    25 int a[1000010],pp[1000010];
    26 int main()
    27 {
    28     get_prime();
    29     //printf("%d**%d**
    ",p[0],p[1]);
    30     ll l,r,i,j;
    31        while(~scanf("%lld%lld",&l,&r))
    32        {
    33            //if(l>r)swap(l,r);
    34           if(l<2)l=2;
    35           for(i=0;i<=r-l;i++)a[i]=1;
    36           ll sum=r-l+1;//printf("*****
    ");
    37           for(i=0;a[i]<=r&&i<cnt;i++)
    38           for(j=l/p[i]*p[i];j<=r;j+=p[i])
    39           {
    40               if(j>=l&&j/p[i]>1&&a[j-l])
    41                   a[j-l]=0,sum--;
    42           }
    43           
    44           if(sum<2){printf("There are no adjacent primes.
    ");continue;}
    45           
    46           ll cp=0;
    47           for(i=0;i<=r-l;i++)
    48              if(a[i])    pp[cp++]=i+l;
    49         ll max,min,pos1,pos2;
    50         max=min=pp[1]-pp[0];
    51         pos1=pos2=1;
    52         for(i=2;i<cp;i++)
    53         { 
    54             if(max<pp[i]-pp[i-1])
    55             {
    56                 max=pp[i]-pp[i-1];
    57                 pos1=i;
    58             }
    59             if(min>pp[i]-pp[i-1])
    60             {
    61                 min=pp[i]-pp[i-1];
    62                 pos2=i;
    63             }
    64         } 
    65           printf("%d,%d are closest, %d,%d are most distant.
    ",pp[pos2-1],pp[pos2],pp[pos1-1],pp[pos1])    ;
    66      }
    67     return 0;
    68 }
    View Code
  • 相关阅读:
    windows 10 下部署WCF 一些细节
    系统提示 由于系统缓冲区空间不足或队列已满,不能执行套接字上的操作。
    zookeeper常用命令
    zookeeper安装与配置
    Java访问者模式
    总结设计模式—(大话设计模式下篇)
    总结设计模式—(大话设计模式中篇)
    总结设计模式—(大话设计模式上篇)
    Java中间缓存变量机制
    解释模式
  • 原文地址:https://www.cnblogs.com/skykill/p/3236526.html
Copyright © 2011-2022 走看看