zoukankan      html  css  js  c++  java
  • 4种常见网络

    网址: http://www.cnblogs.com/forstudy/archive/2012/03/20/2407954.html

    NetworkX提供了4种常见网络的建模方法,分别是:规则图,ER随机图,WS小世界网络和BA无标度网络。

    一. 规则图

      规则图差不多是最没有复杂性的一类图,random_graphs.random_regular_graph(d, n)方法可以生成一个含有n个节点,每个节点有d个邻居节点的规则图。

      下面一段示例代码,生成了包含20个节点、每个节点有3个邻居的规则图:

    复制代码
     1 import networkx as nx
    2 import matplotlib.pyplot as plt
    3
    4 # regular graphy
    5 # generate a regular graph which has 20 nodes & each node has 3 neghbour nodes.
    6 RG = nx.random_graphs.random_regular_graph(3, 20)
    7 # the spectral layout
    8 pos = nx.spectral_layout(RG)
    9 # draw the regular graphy
    10 nx.draw(RG, pos, with_labels = False, node_size = 30)
    11 plt.show()
    复制代码



    二、ER随机图

      ER随机图是早期研究得比较多的一类“复杂”网络,模型的基本思想是以概率p连接N个节点中的每一对节点。用random_graphs.erdos_renyi_graph(n,p)方法生成一个含有n个节点、以概率p连接的ER随机图:

    复制代码
     1 import networkx as nx
    2 import matplotlib.pyplot as plt
    3
    4 # erdos renyi graph
    5 # generate a graph which has n=20 nodes, probablity p = 0.2.
    6 ER = nx.random_graphs.erdos_renyi_graph(20, 0.2)
    7 # the shell layout
    8 pos = nx.shell_layout(ER)
    9 nx.draw(ER, pos, with_labels = False, node_size = 30)
    10 plt.show()
    复制代码

    三、WS小世界网络

      用random_graphs.watts_strogatz_graph(n, k, p)方法生成一个含有n个节点、每个节点有k个邻居、以概率p随机化重连边的WS小世界网络。

      下面是一个例子:

    复制代码
     1 import networkx as nx
    2 import matplotlib.pyplot as plt
    3
    4 # WS network
    5
    6 # generate a WS network which has 20 nodes,
    7 # each node has 4 neighbour nodes,
    8 # random reconnection probability was 0.3.
    9 WS = nx.random_graphs.watts_strogatz_graph(20, 4, 0.3)
    10 # circular layout
    11 pos = nx.circular_layout(WS)
    12 nx.draw(WS, pos, with_labels = False, node_size = 30)
    13 plt.show()
    复制代码

    四、BA无标度网络

      用random_graphs.barabasi_albert_graph(n, m)方法生成一个含有n个节点、每次加入m条边的BA无标度网络。

      下面是一个例子:

    复制代码
     1 import networkx as nx
    2 import matplotlib.pyplot as plt
    3
    4 # BA scale-free degree network
    5 # generalize BA network which has 20 nodes, m = 1
    6 BA = nx.random_graphs.barabasi_albert_graph(20, 1)
    7 # spring layout
    8 pos = nx.spring_layout(BA)
    9 nx.draw(BA, pos, with_labels = False, node_size = 30)
    10 plt.show()
    复制代码

  • 相关阅读:
    8VC Venture Cup 2016
    8VC Venture Cup 2016
    8VC Venture Cup 2016
    HDU 5627 Clarke and MST &意义下最大生成树 贪心
    HDU 5626 Clarke and points 平面两点曼哈顿最远距离
    《花开物语》观后感
    Codeforces Round #146 (Div. 1) B. Let's Play Osu! dp
    Codeforces Round #146 (Div. 1) A. LCM Challenge 水题
    Educational Codeforces Round 7 E. Ants in Leaves 贪心
    Educational Codeforces Round 7 D. Optimal Number Permutation 构造题
  • 原文地址:https://www.cnblogs.com/skykill/p/7719873.html
Copyright © 2011-2022 走看看