zoukankan      html  css  js  c++  java
  • 跟我一起hadoop(1)-hadoop2.6安装与使用

    伪分布式

    hadoop的三种安装方式:

    安装之前需要

    $ sudo apt-get install ssh
         $ sudo apt-get install rsync

    详见:http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/SingleCluster.html

    伪分布式配置

    Configuration

    修改下边:

    etc/hadoop/core-site.xml:

    <configuration>
        <property>
            <name>fs.defaultFS</name>
            <value>hdfs://localhost:9000</value>
        </property>
    </configuration>

    etc/hadoop/hdfs-site.xml:

    <configuration>
        <property>
            <name>dfs.replication</name>
            <value>1</value>
        </property>
    </configuration>
     
    配置ssh
      $ ssh-keygen -t dsa -P '' -f ~/.ssh/id_dsa
      $ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
     
    如果想运行在yarn上
    需要执行下边的步骤:
    1. Configure parameters as follows:

      etc/hadoop/mapred-site.xml:

      <configuration>
          <property>
              <name>mapreduce.framework.name</name>
              <value>yarn</value>
          </property>
      </configuration>

      etc/hadoop/yarn-site.xml:

      <configuration>
          <property>
              <name>yarn.nodemanager.aux-services</name>
              <value>mapreduce_shuffle</value>
          </property>
      </configuration>
    2. Start ResourceManager daemon and NodeManager daemon:
        $ sbin/start-yarn.sh
    3. Browse the web interface for the ResourceManager; by default it is available at:
      • ResourceManager - http://localhost:8088/
    4. Run a MapReduce job.
    5. When you're done, stop the daemons with:
        $ sbin/stop-yarn.sh

    输入:

    http://localhost:8088/

    可以看到

    image

    启动yarn后

    1. Format the filesystem:
        $ bin/hdfs namenode -format
    2. Start NameNode daemon and DataNode daemon:
        $ sbin/start-dfs.sh

      The hadoop daemon log output is written to the $HADOOP_LOG_DIR directory (defaults to $HADOOP_HOME/logs).

    3. Browse the web interface for the NameNode; by default it is available at:

    输入后得到:

    image

    然后执行测试

    1. Make the HDFS directories required to execute MapReduce jobs:
        $ bin/hdfs dfs -mkdir /user
        $ bin/hdfs dfs -mkdir /user/<username>
    2. Copy the input files into the distributed filesystem:
        $ bin/hdfs dfs -put etc/hadoop input
    3. Run some of the examples provided:
        $ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0.jar grep input output 'dfs[a-z.]+'
    4. Examine the output files:

      Copy the output files from the distributed filesystem to the local filesystem and examine them:

        $ bin/hdfs dfs -get output output
        $ cat output/*

      or

      View the output files on the distributed filesystem:

        $ bin/hdfs dfs -cat output/*

    看运行的情况:

    image

    查看结果

    image

    测试执行成功,可以编写本地代码了。

    eclipse hadoop2.6插件使用

    下载源码:

    git clone https://github.com/winghc/hadoop2x-eclipse-plugin.git
     

    下载过程:

    image

    编译插件:

    cd src/contrib/eclipse-plugin
    ant jar -Dversion=2.6.0 -Declipse.home=/usr/local/eclipse -Dhadoop.home=/usr/local/hadoop-2.6.0  //路径根据自己的配置image

    • 复制编译好的jar到eclipse插件目录,重启eclipse
    • 配置 hadoop 安装目录

    window ->preference -> hadoop Map/Reduce -> Hadoop installation directory

    • 配置Map/Reduce 视图

    window ->Open Perspective -> other->Map/Reduce -> 点击“OK”

    windows → show view → other->Map/Reduce Locations-> 点击“OK”

    • 控制台会多出一个“Map/Reduce Locations”的Tab页

    在“Map/Reduce Locations” Tab页 点击图标<大象+>或者在空白的地方右键,选择“New Hadoop location…”,弹出对话框“New hadoop location…”,配置如下内容:将ha1改为自己的hadoop用户

    注意:MR Master和DFS Master配置必须和mapred-site.xml和core-site.xml等配置文件一致。

    打开Project Explorer,查看HDFS文件系统。

    • 新建Map/Reduce任务

    File->New->project->Map/Reduce Project->Next

    编写WordCount类:记得先把服务都起来

    /**
     * 
     */
    package com.zongtui;
    
    /**
     * ClassName: WordCount <br/>
     * Function: TODO ADD FUNCTION. <br/>
     * date: Jun 28, 2015 5:34:18 AM <br/>
     *
     * @author zhangfeng
     * @version 
     * @since JDK 1.7
     */
    
    import java.io.IOException;
    import java.util.Iterator;
    import java.util.StringTokenizer;
    
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapred.FileInputFormat;
    import org.apache.hadoop.mapred.FileOutputFormat;
    import org.apache.hadoop.mapred.JobClient;
    import org.apache.hadoop.mapred.JobConf;
    import org.apache.hadoop.mapred.MapReduceBase;
    import org.apache.hadoop.mapred.Mapper;
    import org.apache.hadoop.mapred.OutputCollector;
    import org.apache.hadoop.mapred.Reducer;
    import org.apache.hadoop.mapred.Reporter;
    import org.apache.hadoop.mapred.TextInputFormat;
    import org.apache.hadoop.mapred.TextOutputFormat;
    
    public class WordCount {
        public static class Map extends MapReduceBase implements
                Mapper<LongWritable, Text, Text, IntWritable> {
            private final static IntWritable one = new IntWritable(1);
            private Text word = new Text();
    
            public void map(LongWritable key, Text value,
                    OutputCollector<Text, IntWritable> output, Reporter reporter)
                    throws IOException {
                String line = value.toString();
                StringTokenizer tokenizer = new StringTokenizer(line);
                while (tokenizer.hasMoreTokens()) {
                    word.set(tokenizer.nextToken());
                    output.collect(word, one);
                }
            }
        }
    
        public static class Reduce extends MapReduceBase implements
                Reducer<Text, IntWritable, Text, IntWritable> {
            public void reduce(Text key, Iterator<IntWritable> values,
                    OutputCollector<Text, IntWritable> output, Reporter reporter)
                    throws IOException {
                int sum = 0;
                while (values.hasNext()) {
                    sum += values.next().get();
                }
                output.collect(key, new IntWritable(sum));
            }
        }
    
        public static void main(String[] args) throws Exception {
            JobConf conf = new JobConf(WordCount.class);
            conf.setJobName("wordcount");
    
            conf.setOutputKeyClass(Text.class);
            conf.setOutputValueClass(IntWritable.class);
    
            conf.setMapperClass(Map.class);
            conf.setReducerClass(Reduce.class);
    
            conf.setInputFormat(TextInputFormat.class);
            conf.setOutputFormat(TextOutputFormat.class);
    
            FileInputFormat.setInputPaths(conf, new Path(args[0]));
            FileOutputFormat.setOutputPath(conf, new Path(args[1]));
    
            JobClient.runJob(conf);
        }
    }

    user/admin123/input/hadoop是你上传在hdfs的文件夹(自己创建),里面放要处理的文件。ouput1放输出结果

    image

    将程序放在hadoop集群上运行:右键-->Runas -->Run on Hadoop,最终的输出结果会在HDFS相应的文件夹下显示。至此,ubuntu下hadoop-2.6.0 eclipse插件配置完成。

    遇到异常

    Exception in thread "main" org.apache.hadoop.mapred.FileAlreadyExistsException: Output directory hdfs://localhost:9000/output already exists
        at org.apache.hadoop.mapred.FileOutputFormat.checkOutputSpecs(FileOutputFormat.java:132)
        at org.apache.hadoop.mapreduce.JobSubmitter.checkSpecs(JobSubmitter.java:564)
        at org.apache.hadoop.mapreduce.JobSubmitter.submitJobInternal(JobSubmitter.java:432)
        at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1296)
        at org.apache.hadoop.mapreduce.Job$10.run(Job.java:1293)
        at java.security.AccessController.doPrivileged(Native Method)
        at javax.security.auth.Subject.doAs(Subject.java:415)
        at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)
        at org.apache.hadoop.mapreduce.Job.submit(Job.java:1293)
        at org.apache.hadoop.mapred.JobClient$1.run(JobClient.java:562)
        at org.apache.hadoop.mapred.JobClient$1.run(JobClient.java:557)
        at java.security.AccessController.doPrivileged(Native Method)
        at javax.security.auth.Subject.doAs(Subject.java:415)
        at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1628)
        at org.apache.hadoop.mapred.JobClient.submitJobInternal(JobClient.java:557)
        at org.apache.hadoop.mapred.JobClient.submitJob(JobClient.java:548)
        at org.apache.hadoop.mapred.JobClient.runJob(JobClient.java:833)
        at com.zongtui.WordCount.main(WordCount.java:83)

    1、改变输出路径。

    2、删除重新建。

    运行完成后看结果:

    image

  • 相关阅读:
    SG函数(斐波那契博弈) Fibonacci again and again
    poj
    威佐夫博弈
    Java——类的定义
    链队列——出入队列
    Java——写一个求和 “方法”
    巴什博弈 HDU-1846
    链栈——入栈和出栈
    java——基本数据类型
    JAVA——桌球游戏(动画)
  • 原文地址:https://www.cnblogs.com/skyme/p/4606138.html
Copyright © 2011-2022 走看看