http://acm.hdu.edu.cn/showproblem.php?
pid=4059
现场赛中通过率挺高的一道题 可是容斥原理不怎么会。。
參考了http://blog.csdn.net/acm_cxlove/article/details/7434864
1、求逆元 p=1e9+7是素数。所以由 a^(p-1)%p同余于1 可得a%p的逆元为a^(p-2)
2、segma(i^k)都能够通过推导得到求和公式 详见http://blog.csdn.net/acm_cxlove/article/details/7434864
3、容斥原理。还在恶补中 代码写的挺美丽
#include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #include <set> #include <cmath> #include <vector> using namespace std; #define ll long long #define IN(s) freopen(s,"r",stdin) #define OUT(s) freopen(s,"w",stdout) const int MOD = 1000000007; const int N = 10005; const int M = 10050; ll n,thr;//thr 30的逆元 vector<int>fac; bool is[N]; int prm[M]; int getprm(int n){ int i, j, k = 0; int s, e = (int)(sqrt(0.0 + n) + 1); memset(is, 1, sizeof(is)); prm[k++] = 2; is[0] = is[1] = 0; for(i = 4; i < n; i += 2) is[i] = 0; for(i = 3; i < e; i += 2) if(is[i]) { prm[k++] = i; for(s = i * 2, j = i * i; j < n; j += s) is[j] = 0; // 由于j是奇数,所以+奇数i后是偶数,不必处理! } for( ; i < n; i += 2) if(is[i]) prm[k++] = i; return k; // 返回素数的个数 } ll qmod(ll x,ll t) { ll ret=1,base=x; while(t) { if(t&1)ret=(ret*base)%MOD; base=(base*base)%MOD; t/=2; } return ret; } ll sum(ll x) { ll ret=1; ret=(ret*x)%MOD; ret=(ret*(x+1))%MOD; ret=(ret*((2*x+1)%MOD))%MOD; ret=(((3*x*x)%MOD+(3*x)%MOD-1+MOD)%MOD*ret)%MOD; return (ret*thr)%MOD; } inline ll four(ll x) { return (((x%MOD)*x%MOD)*x%MOD)*x%MOD; } ll dfs(int cur, ll tmp)//容斥原理 { ll ret=0,f; for(int i=cur;i<fac.size();i++) { f=fac[i]; ret=(ret+(sum(tmp/f)*four(f))%MOD)%MOD; ret=( (ret-dfs(i+1,tmp/f)*four(f))%MOD+MOD )%MOD; } return ret%MOD; } int main() { //IN("hdu4059.txt"); int ncase; ll s1,s2; scanf("%d",&ncase); int prmnum=getprm(N-1); thr=qmod(30,MOD-2); while(ncase--) { scanf("%I64d",&n); //int sn=(int)sqrt(n); fac.clear(); ll tmp=n; for(int i=0;i<prmnum && prm[i]<=tmp;i++) { if(tmp%prm[i] == 0) { fac.push_back(prm[i]); while(tmp%prm[i] == 0) tmp/=prm[i]; } } //while(tmp%prm[i] == 0)fac.push_back(prm[i]),tmp/=prm[i]; if(tmp!=1)fac.push_back(tmp); //cout << "FUck= " << sum(n) << endl; printf("%I64d ",( (sum(n)- dfs(0,n)+MOD)%MOD + MOD)%MOD ); } return 0; }