zoukankan      html  css  js  c++  java
  • POJ1469 COURSES 【二分图最大匹配·HK算法】

    COURSES
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 17777   Accepted: 7007

    Description

    Consider a group of N students and P courses. Each student visits zero, one or more than one courses. Your task is to determine whether it is possible to form a committee of exactly P students that satisfies simultaneously the conditions: 

    • every student in the committee represents a different course (a student can represent a course if he/she visits that course) 
    • each course has a representative in the committee 

    Input

    Your program should read sets of data from the std input. The first line of the input contains the number of the data sets. Each data set is presented in the following format: 

    P N 
    Count1 Student1 1 Student1 2 ... Student1 Count1 
    Count2 Student2 1 Student2 2 ... Student2 Count2 
    ... 
    CountP StudentP 1 StudentP 2 ... StudentP CountP 

    The first line in each data set contains two positive integers separated by one blank: P (1 <= P <= 100) - the number of courses and N (1 <= N <= 300) - the number of students. The next P lines describe in sequence of the courses �from course 1 to course P, each line describing a course. The description of course i is a line that starts with an integer Count i (0 <= Count i <= N) representing the number of students visiting course i. Next, after a blank, you抣l find the Count i students, visiting the course, each two consecutive separated by one blank. Students are numbered with the positive integers from 1 to N. 
    There are no blank lines between consecutive sets of data. Input data are correct. 

    Output

    The result of the program is on the standard output. For each input data set the program prints on a single line "YES" if it is possible to form a committee and "NO" otherwise. There should not be any leading blanks at the start of the line.

    Sample Input

    2
    3 3
    3 1 2 3
    2 1 2
    1 1
    3 3
    2 1 3
    2 1 3
    1 1

    Sample Output

    YES
    NO

    Source

    题意:有P门课,N个学生,每门课仅仅能相应一个人,可是单个人能够相应多门课。求最大匹配是否等于P。

    题解:匈牙利也能够解,看到书上介绍了这个HK算法,时间复杂度要更低,于是尝试了下,可是...写起来真是太麻烦了。


    #include <stdio.h>
    #include <string.h>
    #include <queue>
    
    #define maxn 305
    #define maxp 105
    #define maxm maxn * maxp
    #define inf 0x3f3f3f3f
    
    int head[maxp], id, p, n, dis;
    struct Node {
        int v, next;
    } E[maxm];
    int dx[maxp], dy[maxn], cx[maxp], cy[maxn];
    bool visy[maxn];
    
    void AddEdge(int u, int v) {
        E[id].v = v; 
        E[id].next = head[u];
        head[u] = id++;
    }
    
    void GetMap() {
        int k, v, i; id = 0;
        scanf("%d%d", &p, &n);
        memset(head, -1, sizeof(int) * (p + 1));
        for(i = 1; i <= p; ++i) {
            scanf("%d", &k);
            while(k--) {
                scanf("%d", &v);
                AddEdge(i, v);
            }
        }
    }
    
    bool searchPath() {
        std::queue<int> Q;
        int i, u, v; dis = inf;
        memset(dx, 0, sizeof(int) * (p + 1));
        memset(dy, 0, sizeof(int) * (n + 1));
        for(i = 1; i <= p; ++i) {
            if(!cx[i]) Q.push(i);
        }
        while(!Q.empty()) {
            u = Q.front(); Q.pop();
            if(dx[u] > dis) break;
            for(i = head[u]; i != -1; i = E[i].next) {
                if(!dy[v = E[i].v]) {
                    dy[v] = dx[u] + 1;
                    if(!cy[v]) dis = dy[v];
                    else {
                        dx[cy[v]] = dy[v] + 1;
                        Q.push(cy[v]);
                    }
                }
            }
        }
        return dis != inf;
    }
    
    int findPath(int u) {
        int i, v;
        for(i = head[u]; i != -1; i = E[i].next) {
            if(!visy[v = E[i].v] && dx[u] + 1 == dy[v]) {
                visy[v] = 1;
                if(dy[v] == dis && cy[v]) continue;
                if(!cy[v] || findPath(cy[v])) {
                    cy[v] = u; cx[u] = v;
                    return 1;
                }
            }
        }
        return 0;
    }
    
    int MaxMatch() {
        int ans = 0, i;
        memset(cx, 0, sizeof(int) * (p + 1));
        memset(cy, 0, sizeof(int) * (n + 1));
        while(searchPath()) {
            memset(visy, 0, sizeof(bool) * (n + 1));
            for(i = 1; i <= p; ++i)
                if(!cx[i]) ans += findPath(i);
        }
        return ans;
    }
    
    void Solve() {
        printf(MaxMatch() == p ? "YES
    " : "NO
    ");
    }
    
    int main() {
        // freopen("stdin.txt", "r", stdin);
        int t;
        scanf("%d", &t);
        while(t--) {
            GetMap();
            Solve();
        }
        return 0;
    }


  • 相关阅读:
    网站页面性能优化的 34条黄金守则 (雅虎团队经验)
    进程调度算法小结
    玩转TCP连接
    数据包在网络中的流转
    浅入理解JVM虚拟机
    Leecode no.47 全排列 II
    Leecode no.143 重排链表
    关于我用设计模式对公司代码重构的这件事
    进程间通信方式小结
    Leecode no.82 删除排序链表中的重复元素 II
  • 原文地址:https://www.cnblogs.com/slgkaifa/p/7145763.html
Copyright © 2011-2022 走看看