zoukankan      html  css  js  c++  java
  • python修饰器(装饰器)以及wraps

    Python装饰器(decorator)是在程序开发中经常使用到的功能,合理使用装饰器,能让我们的程序如虎添翼。

    装饰器的引入

    初期及问题的诞生

    假如现在在一个公司,有A B C三个业务部门,还有S一个基础服务部门,目前呢,S部门提供了两个函数,供其他部门调用,函数如下:

    def f1():
        print('f1 called')
    
    def f2():
        print('f2 called')

    在初期,其他部门这样调用是没有问题的,随着公司业务的发展,现在S部门需要对函数调用假如权限验证,如果有权限的话,才能进行调用,否则调用失败。考虑一下,如果是我们,该怎么做呢?

    方案集合
    1、让调用方也就是ABC部门在调用的时候,先主动进行权限验证
    2、S部门在对外提供的函数中,首先进行权限认证,然后再进行真正的函数操作
    问题
        方案一,将本不该暴露给外层的权限认证,暴露在使用方面前,同时如果有多个部门呢,要每个部门每个人都要周知到,你还不缺定别人一定会这么做,不靠谱。。。
        方案二,看似看行,可是当S部门对外提供更多的需要进行权限验证方法时,每个函数都要调用权限验证,同样也实在费劲,不利于代码的维护性和扩展性

    那么,有没有一种方法能够遵循代码的开放闭合原则,来完美的解决此问题呢?

    装饰器引入
    答案肯定是有的,不然真的是弱爆了。先看代码

    def w1(func):
        def inner():
            print('...验证权限...')
            func()
        return inner
    @w1
    def f1():
        print('f1 called')
    
    @w1
    def f2():
        print('f2 called')
    f1()
    f2()

    输出结果为

    ...验证权限...
    f1 called
    ...验证权限...
    f2 called

    可以通过代码及输出看到,在调用f1 f2 函数时,成功进行了权限验证,那么是怎么做到的呢?其实这里就使用到了装饰器,通过定义一个闭包函数w1,在我们调用函数上通过关键词@w1,这样就对f1 f2函数完成了装饰。

    装饰器原理
    首先,开看我们的装饰器函数w1,该函数接收一个参数func,其实就是接收一个方法名,w1内部又定义一个函数inner,在inner函数中增加权限校验,并在验证完权限后调用传进来的参数func,同时w1的返回值为内部函数inner,其实就是一个闭包函数。

    然后,再来看一下,在f1上增加@w1,那这是什么意思呢?当python解释器执行到这句话的时候,会去调用w1函数,同时将被装饰的函数名作为参数传入(此时为f1),根据闭包一文分析,在执行w1函数的时候,此时直接把inner函数返回了,同时把它赋值给f1,此时的f1已经不是未加装饰时的f1了,而是指向了w1.inner函数地址。相当于f1=w1(f1)

    接下来,在调用f1()的时候,其实调用的是w1.inner函数,那么此时就会先执行权限验证,然后再调用原来的f1(),该处的f1就是通过装饰传进来的参数f1。

    这样下来,就完成了对f1的装饰,实现了权限验证。

    装饰器知识点

    执行时机

    了解了装饰器的原理后,那么它的执行时机是什么样呢,接下来就来看一下。 
    国际惯例,先上代码

    def w1(fun):
        print('...装饰器开始装饰...')
        def inner():
            print('...验证权限...')
            fun()
        return inner
    @w1
    def test():
        print('test')
    test()

    输出结果为

    ...装饰器开始装饰...
    ...验证权限...
    test

    由此可以发现,当python解释器执行到@w1时,就开始进行装饰了,相当于执行了如下代码:

    test = w1(test)

    两个装饰器执行流程和装饰结果

    当有两个或两个以上装饰器装饰一个函数时,那么执行流程和装饰结果是什么样的呢?同样,还是以代码来说明问题。

    def makeBold(fun):
        print('----a----')
    
        def inner():
            print('----1----')
            return '<b>' + fun() + '</b>'
        return inner
    def makeItalic(fun):
        print('----b----')
    
        def inner():
            print('----2----')
            return '<i>' + fun() + '</i>'
        return inner
    @makeBold
    @makeItalic
    def test():
        print('----c----')
        print('----3----')
        return 'hello python decorator'
    ret = test()
    print(ret)

    输出结果:

    ----b----
    ----a----
    ----1----
    ----2----
    ----c----
    ----3----
    <b><i>hello python decorator</i></b>

    可以发现,先用第二个装饰器(makeItalic)进行装饰,接着再用第一个装饰器(makeBold)进行装饰,而在调用过程中,先执行第一个装饰器(makeBold),接着再执行第二个装饰器(makeItalic)。

    为什么呢,分两步来分析一下。

    1、装饰时机 通过上面装饰时机的介绍,我们可以知道,在执行到@makeBold的时候,需要对下面的函数进行装饰,此时解释器继续往下走,发现并不是一个函数名,而又是一个装饰器,这时候,@makeBold装饰器暂停执行,而接着执行接下来的装饰器@makeItalic,接着把test函数名传入装饰器函数,从而打印’b’,在makeItalic装饰完后,此时的test指向makeItalic的inner函数地址,这时候有返回来执行@makeBold,接着把新test传入makeBold装饰器函数中,因此打印了’a’。
    2、在调用test函数的时候,根据上述分析,此时test指向makeBold.inner函数,因此会先打印‘1‘,接下来,在调用fun()的时候,其实是调用的makeItalic.inner()函数,所以打印‘2‘,在makeItalic.inner中,调用的fun其实才是我们最原声的test函数,所以打印原test函数中的‘c‘,‘3‘,所以在一层层调完之后,打印的结果为<b><i>hello python decorator</i></b> 。

    对无参函数进行装饰

    上面例子中的f1 f2都是对无参函数的装饰,不再单独举例

    对有参数函数进行装饰

    在使用中,有的函数可能会带有参数,那么这种如何处理呢? 
    代码优先:

    def w_say(fun):
        """
        如果原函数有参数,那闭包函数必须保持参数个数一致,并且将参数传递给原方法
        """
    
        def inner(name):
            """
            如果被装饰的函数有行参,那么闭包函数必须有参数
            :param name:
            :return:
            """
            print('say inner called')
            fun(name)
    
        return inner
    
    
    @w_say
    def hello(name):
        print('hello ' + name)
    
    
    hello('wangcai')

    输出结果为:

    say inner called
    hello wangcai

    具体说明代码注释已经有了,就不再单独说明了。 
    此时,也许你就会问了,那是一个参数的,如果多个或者不定长参数呢,该如何处理呢?看看下面的代码你就秒懂了。

    def w_add(func):
        def inner(*args, **kwargs):
            print('add inner called')
            func(*args, **kwargs)
        return inner
    @w_add
    def add(a, b):
        print('%d + %d = %d' % (a, b, a + b))
    @w_add
    def add2(a, b, c):
        print('%d + %d + %d = %d' % (a, b, c, a + b + c))
    add(2, 4)
    add2(2, 4, 6)

    输出结果为:

    add inner called
    2 + 4 = 6
    add inner called
    2 + 4 + 6 = 12

    利用python的可变参数轻松实现装饰带参数的函数。

    对带有返回值的函数进行装饰

    下面对有返回值的函数进行装饰,按照之前的写法,代码是这样的

    def w_test(func):
        def inner():
            print('w_test inner called start')
            func()
            print('w_test inner called end')
        return inner
    @w_test
    def test():
        print('this is test fun')
        return 'hello'
    ret = test()
    print('ret value is %s' % ret)

    输出结果为:

    w_test inner called start
    this is test fun
    w_test inner called end
    ret value is None

    可以发现,此时,并没有输出test函数的‘hello’,而是None,那是为什么呢,可以发现,在inner函数中对test进行了调用,但是没有接受不了返回值,也没有进行返回,那么默认就是None了,知道了原因,那么来修改一下代码:

    def w_test(func):
        def inner():
            print('w_test inner called start')
            str = func()
            print('w_test inner called end')
            return str
        return inner
    @w_test
    def test():
        print('this is test fun')
        return 'hello'
    ret = test()
    print('ret value is %s' % ret)

    输出结果:

    w_test inner called start
    this is test fun
    w_test inner called end
    ret value is hello

    这样就达到预期,完成对带返回值参数的函数进行装饰。

    带参数的装饰器

    介绍了对带参数的函数和有返回值的函数进行装饰,那么有没有带参数的装饰器呢,如果有的话,又有什么用呢? 
    答案肯定是有的,接下来通过代码来看一下吧。

    def func_args(pre='xiaoqiang'):
        def w_test_log(func):
            def inner():
                print('...记录日志...visitor is %s' % pre)
                func()
            return inner
        return w_test_log
    # 带有参数的装饰器能够起到在运行时,有不同的功能
    # 先执行func_args('wangcai'),返回w_test_log函数的引用
    # @w_test_log
    # 使用@w_test_log对test_log进行装饰
    @func_args('wangcai')
    def test_log():
        print('this is test log')
    test_log()

    输出结果为:

    ...记录日志...visitor is wangcai
    this is test log

    简单理解,带参数的装饰器就是在原闭包的基础上又加了一层闭包,通过外层函数func_args的返回值w_test_log就看出来了,具体执行流程在注释里已经说明了。
    好处就是可以在运行时,针对不同的参数做不同的应用功能处理。

    通用装饰器
    介绍了这么多,在实际应用中,如果针对没个类别的函数都要写一个装饰器的话,估计就累死了,那么有没有通用万能装饰器呢,答案肯定是有的,废话不多说,直接上代码。

    def w_test(func):
        def inner(*args, **kwargs):
            ret = func(*args, **kwargs)
            return ret
        return inner
    @w_test
    def test():
        print('test called')
    @w_test
    def test1():
        print('test1 called')
        return 'python'
    @w_test
    def test2(a):
        print('test2 called and value is %d ' % a)
    test()
    test1()
    test2(9)

    输出结果为:

    test called
    test1 called
    test2 called and value is 9 

    把上面几种示例结合起来,就完成了通用装饰器的功能,原理都同上,就不过多废话了。

    类装饰器

    装饰器函数其实是一个接口约束,它必须接受一个callable对象作为参数,然后返回一个callable对象。 
    在python中,一般callable对象都是函数,但是也有例外。比如只要某个对象重写了call方法,那么这个对象就是callable的。

    当创建一个对象后,直接去执行这个对象,那么是会抛出异常的,因为他不是callable,无法直接执行,但进行修改后,就可以直接执行调用了,如下

    class Test(object):
        def __call__(self, *args, **kwargs):
            print('call called')
    
    
    t = Test()
    print(t())

    输出为:

    call called

    下面,引入正题,看一下如何用类装饰函数。

    class Test(object):
        def __init__(self, func):
            print('test init')
            print('func name is %s ' % func.__name__)
            self.__func = func
        def __call__(self, *args, **kwargs):
            print('装饰器中的功能')
            self.__func()
    @Test
    def test():
        print('this is test func')
    test()

    输出结果为:

    test init
    func name is test 
    装饰器中的功能
    this is test func

    和之前的原理一样,当python解释器执行到到@Test时,会把当前test函数作为参数传入Test对象,调用init方法,同时将test函数指向创建的Test对象,那么在接下来执行test()的时候,其实就是直接对创建的对象进行调用,执行其call方法。

    预备知识

    在了解wraps修饰器之前,我们首先要了解partialupdate_wrapper这两个函数,因为在wraps的代码中,用到了这两个函数。

    partial

    首先说partial函数,在官方文档的描述中,这个函数的声明如下:functools.partial(func, *args, **keywords)。它的作用就是返回一个partial对象,当这个partial对象被调用的时候,就像通过func(*args, **kwargs)的形式来调用func函数一样。如果有额外的 位置参数(args) 或者 关键字参数(*kwargs) 被传给了这个partial对象,那它们也都会被传递给func函数,如果一个参数被多次传入,那么后面的值会覆盖前面的值。

    个人感觉这个函数很像C++中的bind函数,都是把某个函数的某个参数固定,从而构造出一个新的函数来。比如下面这个例子:

    from functools import partial
    
    def add(x, y):
        return x+y
    
    # 这里创造了一个新的函数add2,只接受一个整型参数,然后将这个参数统一加上2
    add2 = partial(add, y=2)
    
    add2(3)  # 这里将会输出5

    这个函数是使用C而不是Python实现的,但是官方文档中给出了Python实现的代码,如下所示,大家可以进行参考:

    def partial(func, *args, **keywords):
        def newfunc(*fargs, **fkeywords):
            newkeywords = keywords.copy()
            newkeywords.update(fkeywords)
            return func(*args, *fargs, **newkeywords)
        newfunc.func = func
        newfunc.args = args
        newfunc.keywords = keywords
        return newfunc

    update_wrapper

    接下来,我们再来聊一聊update_wrapper这个函数,顾名思义,这个函数就是用来更新修饰器函数的,具体更新些什么呢,我们可以直接把它的源码搬过来看一下:

    WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__qualname__', '__doc__',
                           '__annotations__')
    WRAPPER_UPDATES = ('__dict__',)
    def update_wrapper(wrapper,
                       wrapped,
                       assigned = WRAPPER_ASSIGNMENTS,
                       updated = WRAPPER_UPDATES):
        for attr in assigned:
            try:
                value = getattr(wrapped, attr)
            except AttributeError:
                pass
            else:
                setattr(wrapper, attr, value)
        for attr in updated:
            getattr(wrapper, attr).update(getattr(wrapped, attr, {}))
        wrapper.__wrapped__ = wrapped
        return wrapper

    大家可以发现,这个函数的作用就是从 被修饰的函数(wrapped) 中取出一些属性值来,赋值给 修饰器函数(wrapper) 。为什么要这么做呢,我们看下面这个例子。

    自定义修饰器v1

    首先我们写个自定义的修饰器,没有任何的功能,仅有文档字符串,如下所示:

    def wrapper(f):
        def wrapper_function(*args, **kwargs):
            """这个是修饰函数"""
            return f(*args, **kwargs)
        return wrapper_function
        
    @wrapper
    def wrapped():
        """这个是被修饰的函数"""
        print('wrapped')
    
    print(wrapped.__doc__)  # 输出`这个是修饰函数`
    print(wrapped.__name__)  # 输出`wrapper_function`

    从上面的例子我们可以看到,我想要获取wrapped这个被修饰函数的文档字符串,但是却获取成了wrapper_function的文档字符串,wrapped函数的名字也变成了wrapper_function函数的名字。这是因为给wrapped添加上@wrapper修饰器相当于执行了一句wrapped = wrapper(wrapped),执行完这条语句之后,wrapped函数就变成了wrapper_function函数。遇到这种情况该怎么办呢,首先我们可以手动地在wrapper函数中更改wrapper_function__doc____name__属性,但聪明的你肯定也想到了,我们可以直接用update_wrapper函数来实现这个功能。

    自定义修饰器v2

    我们对上面定义的修饰器稍作修改,添加了一句update_wrapper(wrapper_function, f)

    from functools import update_wrapper
    
    def wrapper(f):
        def wrapper_function(*args, **kwargs):
            """这个是修饰函数"""
            return f(*args, **kwargs)
        update_wrapper(wrapper_function, f)  # <<  添加了这条语句
        return wrapper_function
        
    @wrapper
    def wrapped():
        """这个是被修饰的函数"""
        print('wrapped')
    
    
    print(wrapped.__doc__)  # 输出`这个是被修饰的函数`
    print(wrapped.__name__)  # 输出`wrapped`

    此时我们可以发现,__doc____name__属性已经能够按我们预想的那样显示了,除此之外,update_wrapper函数也对__module____dict__等属性进行了更改和更新。

    wraps修饰器

    OK,至此,我们已经了解了partialupdate_wrapper这两个函数的功能,接下来我们翻出wraps修饰器的源码:

    WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__qualname__', '__doc__',
                           '__annotations__')
    WRAPPER_UPDATES = ('__dict__',)
    def wraps(wrapped,
              assigned = WRAPPER_ASSIGNMENTS,
              updated = WRAPPER_UPDATES):
        return partial(update_wrapper, wrapped=wrapped,
                       assigned=assigned, updated=updated)

    没错,就是这么的简单,只有这么一句,我们可以看出,wraps函数其实就是一个修饰器版的update_wrapper函数,它的功能和update_wrapper是一模一样的。我们可以修改我们上面的自定义修饰器的例子,做出一个更方便阅读的版本。

    自定义修饰器v3

    from functools import wraps
    
    def wrapper(f):
        @wraps(f)
        def wrapper_function(*args, **kwargs):
            """这个是修饰函数"""
            return f(*args, **kwargs)
        return wrapper_function
        
    @wrapper
    def wrapped():
        """这个是被修饰的函数
        """
        print('wrapped')
    
    print(wrapped.__doc__)  # 输出`这个是被修饰的函数`
    print(wrapped.__name__)  # 输出`wrapped`

    至此,我想大家应该明白wraps这个修饰器的作用了吧,就是将 被修饰的函数(wrapped) 的一些属性值赋值给 修饰器函数(wrapper) ,最终让属性的显示更符合我们的直觉。

    参考链接

    https://segmentfault.com/a/1190000009398663

    https://blog.csdn.net/u010358168/article/details/77773199

  • 相关阅读:
    MySQL server has gone away 问题的解决方法
    MySQL批量SQL插入性能优化
    mysql中int、bigint、smallint 和 tinyint的区别详细介绍
    Mac OS使用ll、la、l等ls的别名命令
    Github上的PHP资源汇总大全
    svn代码版本管理总结
    mysql information_schema介绍
    redis 五种数据结构详解(string,list,set,zset,hash)
    git 换行符LF与CRLF转换问题
    php 利用activeMq+stomp实现消息队列
  • 原文地址:https://www.cnblogs.com/slysky/p/9777424.html
Copyright © 2011-2022 走看看