zoukankan      html  css  js  c++  java
  • Watchmen CodeForces

    Watchmen CodeForces - 650A 

    Watchmen are in a danger and Doctor Manhattan together with his friend Daniel Dreiberg should warn them as soon as possible. There are n watchmen on a plane, the i-th watchman is located at point (xi, yi).

    They need to arrange a plan, but there are some difficulties on their way. As you know, Doctor Manhattan considers the distance between watchmen i and j to be |xi - xj| + |yi - yj|. Daniel, as an ordinary person, calculates the distance using the formula .

    The success of the operation relies on the number of pairs (i, j) (1 ≤ i < j ≤ n), such that the distance between watchman i and watchmen j calculated by Doctor Manhattan is equal to the distance between them calculated by Daniel. You were asked to compute the number of such pairs.

    Input

    The first line of the input contains the single integer n (1 ≤ n ≤ 200 000) — the number of watchmen.

    Each of the following n lines contains two integers xi and yi (|xi|, |yi| ≤ 109).

    Some positions may coincide.

    Output

    Print the number of pairs of watchmen such that the distance between them calculated by Doctor Manhattan is equal to the distance calculated by Daniel.

    Examples

    Input
    3
    1 1
    7 5
    1 5
    Output
    2
    Input
    6
    0 0
    0 1
    0 2
    -1 1
    0 1
    1 1
    Output
    11

    Note

    In the first sample, the distance between watchman 1 and watchman 2 is equal to |1 - 7| + |1 - 5| = 10 for Doctor Manhattan and  for Daniel. For pairs (1, 1), (1, 5) and (7, 5), (1, 5) Doctor Manhattan and Daniel will calculate the same distances.

    题意:给出n个点的坐标(xi,yi);问有多少对点|xi-xj|+|yi-yj| == sqrt( (xi-xj)^2 + (yi-yj)^2 )。 注意:题中有些点的和重合的。

    题解:map存存状态,加加减减就好了

    #include<cstdio>
    #include<iostream>
    #include<algorithm>
    #include<cstring>
    #include<sstream>
    #include<cmath>
    #include<stack>
    #include<map>
    #include<cstdlib>
    #include <vector>
    #include<queue>
    using namespace std;
    
    #define ll long long
    #define llu unsigned long long
    #define INF 0x3f3f3f3f
    #define PI acos(-1.0)
    const int maxn =  1e5+5;
    const int mod = 1e9+7;
    
    map<ll,ll>mpx;
    map<ll,ll>mpy;
    map<pair<ll,ll>,ll>mp;
    int main()
    {
        mpx.clear();
        mpy.clear();
        mp.clear();
        int n;
        ll a,b,ans=0,num=0;
        scanf("%d",&n);
        for(int i=0;i<n;i++)
        {
            scanf("%lld %lld",&a,&b);
            num+=mp[make_pair(a,b)];
            mp[make_pair(a,b)]++;
            ans+=mpx[a];
            mpx[a]++;
            ans+=mpy[b];
            mpy[b]++;
            //printf("%lld %lld
    ",ans,num);
        }
        printf("%lld
    ",ans-num);
        return 0;
    }
  • 相关阅读:
    spart快速大数据分析学习提纲(一)
    Zookeeper的设计模式之观察者模式(十)
    shuffle机制和TextInputFormat分片和读取分片数据(九)
    MapReduce程序开发之流量求和(八)
    分布式系统间通信之RPC简单Demo(七)
    使用JAVA客户端对HDFS进行代码编写(五)
    分布式系统间通信之RPC的基本概念(六)
    DataNode工作原理(四)
    NameNode元数据的管理机制(三)
    javaweb项目部署到服务器(树莓派)上全过程——部署步骤记录与总结
  • 原文地址:https://www.cnblogs.com/smallhester/p/10327474.html
Copyright © 2011-2022 走看看