zoukankan      html  css  js  c++  java
  • Multiplication Puzzle ZOJ

    Multiplication Puzzle ZOJ - 1602 

    传送门

    The multiplication puzzle is played with a row of cards, each containing a single positive integer. During the move player takes one card out of the row and scores the number of points equal to the product of the number on the card taken and the numbers on the cards on the left and on the right of it. It is not allowed to take out the first and the last card in the row. After the final move, only two cards are left in the row.

    The goal is to take cards in such order as to minimize the total number of scored points.

    For example, if cards in the row contain numbers 10 1 50 20 5, player might take a card with 1, then 20 and 50, scoring
    10*1*50 + 50*20*5 + 10*50*5 = 500+5000+2500 = 8000

    If he would take the cards in the opposite order, i.e. 50, then 20, then 1, the score would be
    1*50*20 + 1*20*5 + 10*1*5 = 1000+100+50 = 1150.


    Input

    The first line of the input file contains the number of cards N (3 <= N <= 100). The second line contains N integers in the range from 1 to 100, separated by spaces.

    Process to the end of file.


    Output

    Output file must contain a single integer - the minimal score.


    Sample Input


    6
    10 1 50 50 20 5


    Sample Output

    3650

    题意:一排牌/卡片(一串数字),每次从这些牌中拿走一张牌(首尾两张不能拿),把前一张,这一张,后一张牌上的数字相乘的结果累加,直到只剩下两张牌为止。问所能得到的最小结果是多少。

        例如:5张牌是10,1,50,20,5。拿走的牌的顺序如果是50,20,1。得到的结果就是:

        1*50*20 + 1*20*5 + 10*1*5 = 1000+100+50 = 1150;

    题解:区间DP

    #include<cstdio>
    #include<iostream>
    #include<algorithm>
    #include<cstring>
    #include<sstream>
    #include<cmath>
    #include<stack>
    #include<map>
    #include<cstdlib>
    #include<vector>
    #include<string>
    #include<queue>
    using namespace std;
    
    #define ll long long
    #define llu unsigned long long
    #define INF 0x3f3f3f3f
    const double PI = acos(-1.0);
    const int maxn =  1e2+10;
    const int mod = 1e9+7;
    int a[maxn];
    int dp[maxn][maxn];
    int main()
    {
    
       int n;
       while(~scanf("%d",&n)) {
           memset(dp,INF,sizeof dp);
           for (int i = 1; i <= n; i++)
               scanf("%d", &a[i]);
           for (int i = 1; i <= n; i++)
               dp[i][i] = dp[i - 1][i] = dp[i][i + 1] = 0;
           for (int i = 2; i <= n - 1; i++)
               dp[i - 1][i + 1] = a[i] * a[i - 1] * a[i + 1];
           for (int len = 3; len <= n - 1; len++)
               for (int i = 1; i + len <= n; i++) {
                   int j = i + len;
                   for (int k = i + 1; k < j; k++)
                       dp[i][j] = min(dp[i][j], dp[i][k] + a[i] * a[k] * a[j] + dp[k][j]);
               }
           printf("%d
    ", dp[1][n]);
       }
    }
  • 相关阅读:
    软件构造 第七章第三节 断言和防御性编程
    软件构造 第七章第二节 错误与异常处理
    软件构造 第七章第一节 健壮性和正确性的区别
    软件构造 第六章第三节 面向可维护的构造技术
    软件构造 第六章第二节 可维护的设计模式
    欧拉函数代码实现及扩展--快速矩阵幂
    编译原理
    算法设计与分析总结
    人工智能简答总结
    感想
  • 原文地址:https://www.cnblogs.com/smallhester/p/10381761.html
Copyright © 2011-2022 走看看