zoukankan      html  css  js  c++  java
  • HZNU 2019 Summer training 4

    A - Little C Loves 3 I

     CodeForces - 1047A 

    题意:一个数分成三份,每一个都不是3的倍数

    题解:分成 (1, 1, n - 2) 或者分成(1, 2, n - 3 )

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <set>
    #include <map>
    #define INF 0x3f3f3f3f
    #define lowbit(x) (x&(-x))
    using namespace std;
    typedef long long ll;
    
    const int maxn = 1e3+7;
    
    int main()
    {
        ll n;
        scanf("%lld",&n);
        if((n - 2) % 3 == 0)
            printf("1 2 %lld
    ",n - 3);
        else
            printf("1 1 %lld
    ",n - 2);
    }
    View Code

     

    B - Cover Points

     CodeForces - 1047B 

    题意:平面上有n个点,用一个顶点在原点,两直角边分别在x轴和y轴的等腰直角三角形覆盖这些点,问能将这些点全部覆盖的三角形的直角边最短是多长

    题解:求解max(x + y)

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <set>
    #include <map>
    #define INF 0x3f3f3f3f
    #define lowbit(x) (x&(-x))
    using namespace std;
    typedef long long ll;
    
    const int maxn = 1e3+7;
    
    int main()
    {
        int n;
        scanf("%d",&n);
        int maxx = 0;
        while(n--)
        {
            int a,b;
            scanf("%d %d",&a,&b);
            maxx = max(maxx,a + b);
        }
        printf("%d
    ",maxx);
    }
    View Code

     

    C - Enlarge GCD

     CodeForces - 1047C 

    题意:n个数的gcd是k,要你删掉最少的数使得删完后的数组的gcd > k

    题解:先求出k,然后每个数除以k。然后找出出现次数最多的质因数即可。

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <set>
    #include <map>
    #define INF 0x3f3f3f3f
    #define lowbit(x) (x&(-x))
    using namespace std;
    typedef long long ll;
    
    const int maxn = 3e5 + 10;
    const int M = 1.5e7 + 10;
    int pn;
    int gcd(int a,int b)
    {
        return b == 0 ? a : gcd(b,a % b);
    }
    
    int a[maxn];
    int num[M];
    int p[4000],prime[4000];
    void init()
    {
        pn = 0;
        memset(p,0,sizeof p);
        for(int i=2;i<4000;i++)
        {
            if(!p[i])
                prime[pn++] = i;
            for(ll j =0 ;j < pn && i * prime[j] < 4000; j++){
                p[i * prime[j]] = 1;
                if(i % prime[j] == 0)
                    continue;
            }
        }
        //cout<<pn<<endl;
    }
    int main()
    {
        int n,mingcd;
        init();
        scanf("%d",&n);
        memset(num,0,sizeof num);
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            if(i == 1)
                mingcd = a[i];
            else
                mingcd = gcd(mingcd,a[i]);
        }
        for(int i=1;i<=n;i++)
            a[i] /= mingcd;
        int ans = -1;
        for(int i=1;i<=n;i++)
        {
            for(int j=0;j<pn && prime[j] * prime[j] <= a[i];j++)
            {
                if(a[i] % prime[j] == 0)
                {
                    num[prime[j]]++;
                    ans = max(ans,num[prime[j]]);
                    while(a[i] % prime[j] == 0)
                        a[i] /= prime[j];
                }
            }
            if(a[i] > 1)
            {
                num[a[i]]++;
                ans = max(ans,num[a[i]]);
            }
        }
        printf("%d
    ", ans == -1 ? ans : n - ans);
    }
    View Code

    D - Little C Loves 3 II

     CodeForces - 1047D 

    题意:给你n*m得棋盘,让你找两点之间距离为3的点的个数,不能重复使用,距离定义,两坐标差绝对值之和、

    题解:找规律,找特殊样例即可

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <set>
    #include <map>
    #define INF 0x3f3f3f3f
    #define lowbit(x) (x&(-x))
    using namespace std;
    typedef long long ll;
    
    const int maxn = 1e3+7;
    
    int gcd(int a,int b)
    {
        return b == 0 ? a : gcd(b,a % b);
    }
    int main()
    {
       ll n,m;
       ll ans;
       scanf("%lld %lld",&n,&m);
       if(n > m)
           swap(n,m);
       if(n == 1)
       {
           if(m % 6 == 0)
               ans = n * m;
           else if(m % 6 <= 3)
               ans = m - m % 6;
           else
               ans = m - (6 - m % 6);
       }
       else if(n == 2)
       {
           if(m == 2)
               ans = 0;
           else if(m == 3)
               ans = 4;
           else if(m == 7)
               ans = 12;
           else
               ans = n * m;
       }
       else
       {
           if(n * m % 2 == 1)
               ans = n * m - 1;
           else
               ans = n * m;
       }
       printf("%lld
    ",ans);
    }
    View Code

    E - Region Separation

     CodeForces - 1047E 

    题意:给定一棵大小为n的树,点有点权,在一个方案中可以将整棵树划分多次,要求每次划分后各个联通块的权值和相等,问有多少种划分方案

     

    转自:https://blog.csdn.net/Mys_C_K/article/details/82867961

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cmath>
    #include<vector>
    #include<string.h>
    using namespace std;
    #define LL long long
    const int MAXN = 1e6 + 10;
    const int INF = 0x3f3f3f3f;
    
    const int MOD = 1e9 + 7;
    
    LL s[MAXN];
    LL f[MAXN],p[MAXN],ans[MAXN];
    LL gcd(LL a,LL b)
    {
        return b == 0 ? a : gcd(b,a % b);
    }
    int main()
    {
        int n;
        LL tot = 0;
    
        scanf("%d",&n);
        for(int i = 1; i <=n; i++)
            scanf("%lld",&s[i]);
        for(int i = 2; i <= n; i++)
            scanf("%lld",&p[i]);
        for(int i = n; i;i--)
            s[p[i]] += s[i];
        for(int i = n; i;i--)
            s[i] = s[1] / gcd(s[1],s[i]);
        for(int i = 1; i <= n; i++) {
            if (s[i] <= n) {
                f[s[i]]++;
            }
        }
        for(int i = n; i; i--)
            for(int j = 2 * i; j <= n; j += i){
                f[j] = (f[j] + f[i]) % MOD;
            }
        for(int i=ans[1]=1;i<=n;i++)
            if(f[i]>=i)
                for(int j=i*2;j<=n;j+=i)
                    ans[j] = (ans[j] + ans[i]) % MOD;
        for(int i=1;i<=n;i++)
            if(f[i]>=i)
                tot = (tot + ans[i]) % MOD;
        printf("%lld
    ",tot);
    }
    View Code
  • 相关阅读:
    iaure学习网站
    linux下环境搭建比较
    微信分享jsdk接口
    微信接口开发遇到的问题
    Centos7.6部署k8s(v1.14.2)集群
    k8s简介
    nginx配置ssl证书
    kafka zookeeper介绍
    mysql数据库的备份与还原
    centos7 部署jumpserver
  • 原文地址:https://www.cnblogs.com/smallhester/p/11155896.html
Copyright © 2011-2022 走看看