zoukankan      html  css  js  c++  java
  • 小技巧

    //离散化数组
     for (int i = 1; i <= n; i++) {
                scanf("%d", &a[i]);
                b[i] = a[i];
            }
            sort(a + 1, a + 1 + n);
            int cnt = unique(a + 1, a + 1 + n) - a - 1;
            for (int i = 1; i <= n; i++)
                b[i] = lower_bound(a + 1, a + 1 + cnt, b[i]) - a;
            for (int i = 1; i <= n; i++)
                cout << b[i] << endl;
    //二维坐标点的离散
    struct node {
        int x, y, sx, sy;
        //sx sy 为离散后坐标
    }s[maxn];
    bool cmpx(const node& a, const node& b) {
        return a.x < b.x;
    }
    bool cmpy(const node& a, const node& b) {
        return a.y < b.y;
    }
    int n, m, k,  arrx[maxn], arry[maxn];
    int main()
    {
    
        scanf("%d %d %d", &n, &m, &k);  //n,m为矩阵大小,k为有k个点,对其进行离散
        for (int i = 0; i < k; ++i) {
            scanf("%d %d", &s[i].x, &s[i].y);
            arrx[i] = s[i].x;
            arry[i] = s[i].y;
        }
        sort(s, s + k, cmpx);
        sort(arrx, arrx + k);
        n = unique(arrx, arrx + k) - arrx;
        int idx = 0;
        for (int i = 0; i < k; ++i) {
            if (s[i].x != arrx[idx])
                ++idx;
            s[i].sx = idx + 1;
        }
        sort(s, s + k, cmpy);
        sort(arry, arry + k);
        m = unique(arry, arry + k) - arry;
        idx = 0;
        for (int i = 0; i < k; ++i) {
            if (s[i].y != arry[idx])
                ++idx;
            s[i].sy = idx + 1;
        }
        for (int i = 0; i < k; ++i)
            cout << s[i].sx << " " << s[i].sy << endl;
    }
    //将一个数转换为A - Z的进制,比如3 -> C  34 -> AH  123 -> DS
    void K(int n)
    {
        if(n>26)
            K((n-1)/26);
    
        printf("%c",(n-1)%26+'A');
    }
    struct node{
        double x,y;
    };
    node a,b,c;
    //求两个点之间的长度
    double len(node a,node b) {
        double tmp = sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
        return tmp;
    }
    //给出三个点,求三角形的面积  海伦公式: p=(a+b+c)/2,S=sqrt(p(p-a)(p-b)(p-c))
    double Area(node a,node b,node c){
        double lena = len(a,b);
        double lenb = len(b,c);
        double lenc = len(a,c);
    
        double p = (lena + lenb + lenc) / 2.0;
        double S = sqrt(p * (p - lena) * (p - lenb) * (p - lenc));
        return S;
    }
    //三角形求每条边对应的圆心角
    void Ran() {
        double lena = len(a,b);
        double lenb = len(b,c);
        double lenc = len(a,c);
        double A = acos((lenb * lenb + lenc * lenc - lena * lena) / (2 * lenb * lenc));
        double B = acos((lena * lena + lenc * lenc - lenb * lenb) / (2 * lena * lenc));
        double C = acos((lena * lena + lenb * lenb - lenc * lenc) / (2 * lena * lenb));
    }
    //求外接圆半径r = a * b * c / 4S 
    double R(node a,node b,node c) {
        double lena = len(a,b);
        double lenb = len(b,c);
        double lenc = len(a,c);
        double S = Area(a,b,c);
        double R = lena * lenb * lenc / (4.0 * S);
    }
    //dfs序,多组输入时记得init
    int L[MAXN],R[MAXN];
    int dep[MAXN];
    int head[MAXN];
    int cnt,tot;
    struct node
    {
        int u,v,w,next;
    }s[MAXN << 1];
    void Add(int u,int v) {
        s[tot].u = u;
        s[tot].v = v;
        s[tot].next = head[u];
        head[u] = tot++;
    }
    void dfs_xu(int u,int fa,int d)//dfs序
    {
        L[u] = ++cnt;//开始时间戳
        dep[u] = d;//深度
        for (int i = head[u]; ~i; i = s[i].next) {
            int v = s[i].v;
            if (v == fa)
                continue;
            dfs_xu(v, u, d + 1);
        }
        R[u] = cnt;//结束时间戳
    }
    void init() {
        memset(s, 0, sizeof s);
        memset(L, 0, sizeof L);
        memset(R, 0, sizeof R);
        memset(head, -1, sizeof head);
        cnt = 0;
        tot = 0;
    }
    int main() {
        int n;
        cin >> n;
        init();
        for (int i = 1; i < n; i++) {
            int u, v;
            scanf("%d %d", &u, &v);
            Add(u, v);
            Add(v, u);
        }
        dfs_xu(1, -1, 1);
        for (int i = 1; i <= n; i++)
            printf("%d %d %d
    ", i, L[i], R[i]);
    }
    //优先队列按照s小的优先级
    struct node{
        int s,pos;
        node(){}
        node(int xx,int pp): s(xx),pos(pp){}
        bool operator < (node a)const {
            return s > a.s;         //s小的优先级高
        }
    };
    priority_queue<node>que;
    //逆元
    void ex_gcd(LL a, LL b, LL &x, LL &y, LL &d){
        if (!b) {d = a, x = 1, y = 0;}
        else{
            ex_gcd(b, a % b, y, x, d);
            y -= x * (a / b);
        }
    }
    LL inv(LL t, LL p){//如果不存在,返回-1 
        LL d, x, y;
        ex_gcd(t, p, x, y, d);
        return d == 1 ? (x % p + p) % p : -1;
    }
    int main(){
        LL a, p;
        while(~scanf("%lld%lld", &a, &p)){
            printf("%lld
    ", inv(a, p));
        }
    }
    //组合数
    const int N = 200000 + 5;
    const int MOD = (int)1e9 + 7;
    int F[N], Finv[N], inv[N];//F是阶乘,Finv是逆元的阶乘 
    void init(){
        inv[1] = 1;
        for(int i = 2; i < N; i ++){
            inv[i] = (MOD - MOD / i) * 1ll * inv[MOD % i] % MOD;
        }
        F[0] = Finv[0] = 1;
        for(int i = 1; i < N; i ++){
            F[i] = F[i-1] * 1ll * i % MOD;
            Finv[i] = Finv[i-1] * 1ll * inv[i] % MOD;
        }
    }
    int comb(int n, int m){//comb(n, m)就是C(n, m) 
        if(m < 0 || m > n) return 0;
        return F[n] * 1ll * Finv[n - m] % MOD * Finv[m] % MOD;
    }
    int main(){
        init();
    }
    //大组合数求模,p在10 ^ 5左右
    typedef long long ll;
    const int N =1e5;
    ll n, m, p, fac[N];
    void init()
    {
        int i;
        fac[0] =1;
        for(i =1; i <= p; i++)
            fac[i] = fac[i-1]*i % p;
    }
    ll q_pow(ll a, ll b)
    {
        ll  ans =1;
        while(b)
        {
            if(b &1)  ans = ans * a % p;
            b>>=1;
            a = a*a % p;
        }
        return  ans;
    }
    
    ll C(ll n, ll m)
    {
        if(m > n)  return 0;
        return  fac[n]*q_pow(fac[m]*fac[n-m], p-2) % p;
    }
    
    ll Lucas(ll n, ll m )
    {
        if(m ==0)  return 1;
        else return  (C(n%p, m%p)*Lucas(n/p, m/p))%p;
    }
    
    int main()
    {
        int t;
        scanf("%d", &t);
        while(t--)
        {
            scanf("%lld%lld%lld", &n, &m, &p);
            init();
            printf("%lld
    ", Lucas(n, m));
        }
        return 0;
    }
  • 相关阅读:
    2.1.7出现异常,锁自动释放
    2.1.5脏读
    2.1.4synchronized方法与锁对象
    2.1.3多个对象多个锁
    2.1.2实例变量非线程安全
    2.1.1方法内的变量为线程安全
    Linux内核开发
    fl2440 platform总线led字符设备驱动
    fl2440字符设备led驱动
    cdev结构体及其相关函数
  • 原文地址:https://www.cnblogs.com/smallhester/p/11346254.html
Copyright © 2011-2022 走看看