zoukankan      html  css  js  c++  java
  • 二次剩余

    素数模的二次同余方程

    求解 

    x * x = a(mod p)  p为奇素数,输出 x 的可行解
    // 输入 a 和 mod ,满足式子 x * x = a(mod p)  p为奇素数,输出 x 的可行解
    #include<cstdio>
    
    using namespace std;
    #define LL long long
    LL Pow(LL a,LL b,LL p) {
        LL res = 1;
        for (; b; a = 1LL * a * a % p, b >>= 1)
            if (b & 1) res = 1LL * a * res % p;
        return res;
    }
    
    bool Legendre(LL a,LL p) {
        return Pow(a, p - 1 >> 1, p) == 1;
    }
    
    void modsqr(LL a,LL p) {
        LL x;
        LL i, k, b;
        if (p == 2) x = a % p;
        else if (p % 4 == 3) x = Pow(a, p + 1 >> 2, p);
        else {
            for (b = 1; Legendre(b, p); ++b);
            i = p - 1 >> 1;
            k = 0;
            do {
                i >>= 1;
                k >>= 1;
                if (!((1LL * Pow(a, i, p) * Pow(b, k, p) + 1) % p)) k += p - 1 >> 1;
            } while (!(i & 1));
            x = 1LL * Pow(a, i + 1 >> 1, p) * Pow(b, k >> 1, p) % p;
        }
        if (p - x < x) x = p - x;
        if (x == p - x) printf("%lld
    ", x);        //  输出解
        else printf("%lld %lld
    ", x, p - x);
    }
    
    int main() {
    
        int T;
        scanf("%d", &T);
        LL a, p;
        while (T--) {
            scanf("%lld %lld", &a, &p);
            a %= p;
            if (!Legendre(a, p)) {
                puts("No root");
                continue;
            }
            modsqr(a, p);
        }
        return 0;
    }

    牛客第九场Quadratic equation

    #include<cstdio>
    
    using namespace std;
    const long long mod = 1e9 + 7;
    #define LL long long
    LL B,C;
    LL Pow(LL a,LL b,LL p) {
        LL res = 1;
        for (; b; a = 1LL * a * a % p, b >>= 1)
            if (b & 1) res = 1LL * a * res % p;
        return res;
    }
    
    bool Legendre(LL a,LL p) {
        return Pow(a, p - 1 >> 1, p) == 1;
    }
    bool check(LL b,LL x) {
        if ((b + x) % 2 == 1)
            return false;
        LL xx = (x + b) / 2;
        LL yy = (b - x) / 2;
        if (0 <= xx && xx < mod && 0 <= yy && yy < mod)
            return true;
        return false;
    }
    void modsqr(LL a,LL p) {
        LL x;
        LL i, k, b;
        if (p == 2) x = a % p;
        else if (p % 4 == 3) x = Pow(a, p + 1 >> 2, p);
        else {
            for (b = 1; Legendre(b, p); ++b);
            i = p - 1 >> 1;
            k = 0;
            do {
                i >>= 1;
                k >>= 1;
                if (!((1LL * Pow(a, i, p) * Pow(b, k, p) + 1) % p)) k += p - 1 >> 1;
            } while (!(i & 1));
            x = 1LL * Pow(a, i + 1 >> 1, p) * Pow(b, k >> 1, p) % p;
        }
        if (p - x < x) x = p - x;
        if (x == p - x) {
            if (check(B, x))
                printf("%lld %lld
    ", (B - x) / 2, (B + x) / 2);
            else if (check(B + p, x))
                printf("%lld %lld
    ", (B + p - x) / 2, 1LL * (B + p + x) / 2);
            else puts("-1 -1");
        } else {
            if (check(B, x)) printf("%lld %lld
    ", (B - x) / 2, (B + x) / 2);
            else if (check(B, p - x)) printf("%lld %lld
    ", (B - p + x) / 2, (B - x + p) / 2);
            else if (check(B + p, x)) printf("%lld %lld
    ", (B - x + p) / 2, (B + x + p) / 2);
            else if (check(B + p, p - x)) printf("%lld %lld
    ", (B + x) / 2, (B - x + 2 * p) / 2);
            else puts("-1 -1");
        }
    }
    
    int main() {
    
        int T;
        scanf("%d", &T);
        LL a;
        while (T--) {
            scanf("%lld %lld", &B, &C);
            a = (B * B % mod - 4LL * C % mod + mod);
            a %= mod;
            if (a == 0) {
                if (B % 2 == 0) printf("%lld %lld
    ", B / 2, B / 2);
                else printf("%lld %lld
    ", (B + mod) / 2, (B + mod) / 2);
                continue;
            }
            if (!Legendre(a, mod)) {
                puts("-1 -1");
                continue;
            }
            modsqr(a, mod);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    C# FTP功能实现(转载)
    Invoke和BeginInvoke的使用(转载)
    .NET中各种数据库连接大全(转载)
    最近关注的网络资料(书签)
    SQL语句总结(转载)
    线程池和定时器——多线程的自动管理(转载)
    C#程序安装部署(转载)
    TcpClient.Connect函数连接超时的问题(转载)
    C# 各种定时器比较(转载)
    SQL SERVER中对日期字段(datetime)比较(转载)
  • 原文地址:https://www.cnblogs.com/smallhester/p/11363335.html
Copyright © 2011-2022 走看看