zoukankan      html  css  js  c++  java
  • HDU 1495 非常可乐

    非常可乐

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 23273    Accepted Submission(s): 9485


    Problem Description
    大家一定觉的运动以后喝可乐是一件很惬意的事情,但是seeyou却不这么认为。因为每次当seeyou买了可乐以后,阿牛就要求和seeyou一起分享这一瓶可乐,而且一定要喝的和seeyou一样多。但seeyou的手中只有两个杯子,它们的容量分别是N 毫升和M 毫升 可乐的体积为S (S<101)毫升 (正好装满一瓶) ,它们三个之间可以相互倒可乐 (都是没有刻度的,且 S==N+M,101>S>0,N>0,M>0) 。聪明的ACMER你们说他们能平分吗?如果能请输出倒可乐的最少的次数,如果不能输出"NO"。
     
    Input
    三个整数 : S 可乐的体积 , N 和 M是两个杯子的容量,以"0 0 0"结束。
     
    Output
    如果能平分的话请输出最少要倒的次数,否则输出"NO"。
     
    Sample Input
    7 4 3
    4 1 3
    0 0 0
     
    Sample Output
    NO
    3
     
    Author
    seeyou
     
    Source
     

    思路:可以进行bfs搜索(kuangbin也把这道题放进了搜索模块里面)

    有六种状态,从a瓶到b瓶,a-->c

    b-->a     b-->c

    c-->a     c-->b

    然后每种状态里面又分两种不同情况,可以将此瓶的水全部清空,不能清空......

    然后广搜就可以了........

    #include<iostream>
    #include<stdio.h>
    #include<string.h>
    #include<queue>
    using namespace std;
    int vist[105][105][105],a,b,c;
    struct node
    {
        int a,b,c;
        int step;
    }s[105];
    int sum=0;
    void bfs()
    {
        queue<node>q;
        memset(vist,0,sizeof(vist));
        node p1;
        p1.a=a;
        p1.b=0;
        p1.c=0;
        p1.step=0;
        q.push(p1);
        vist[p1.a][0][0]=1;
        while(!q.empty())
        {
            p1=q.front();
            q.pop();
            if((p1.a==a/2&&p1.b==a/2)||(p1.a==a/2&&p1.c==a/2)||(p1.b==a/2&&p1.c==a/2))
            {
                printf("%d
    ",p1.step);
                return;
            }
            node p2;   
            if(p1.a!=0)
            {
                if(p1.a>b-p1.b)
                {
                    p2.a=p1.a-(b-p1.b);
                    p2.b=b;
                    p2.c=p1.c;
                    p2.step=p1.step+1;
                }
                else
                {
                    p2.a=0;
                    p2.b=p1.b+p1.a;
                    p2.c=p1.c;
                    p2.step=p1.step+1;
                }
                if(!vist[p2.a][p2.b][p2.c])
                {
                    vist[p2.a][p2.b][p2.c]=1;
                    q.push(p2);
                }
            }
             
            if(p1.a!=0)
            {
                if(p1.a>c-p1.c)
                {
                    p2.a=p1.a-(c-p1.c);
                    p2.b=p1.b;
                    p2.c=c;
                    p2.step=p1.step+1;
                }
                else
                {
                    p2.a=0;
                    p2.b=p1.b;
                    p2.c=p1.c+p1.a;
                    p2.step=p1.step+1;
                }
                if(!vist[p2.a][p2.b][p2.c])
                {
                    vist[p2.a][p2.b][p2.c]=1;
                    q.push(p2);
                }
            }
             
            if(p1.b!=0)
            {
                if(p1.b>a-p1.a)
                {
                    p2.b=p1.b-(a-p1.a);
                    p2.a=a;
                    p2.c=p1.c;
                    p2.step=p1.step+1;
                }
                else
                {
                    p2.b=0;
                    p2.a=p1.a+p1.b;
                    p2.c=p1.c;
                    p2.step=p1.step+1;
                }
                if(!vist[p2.a][p2.b][p2.c])
                {
                    vist[p2.a][p2.b][p2.c]=1;
                    q.push(p2);
                }
            }
             
            if(p1.b!=0)
            {
                if(p1.b>c-p1.c)
                {
                    p2.b=p1.b-(c-p1.c);
                    p2.a=p1.a;
                    p2.c=c;
                    p2.step=p1.step+1;
                }
                else
                {
                    p2.b=0;
                    p2.a=p1.a;
                    p2.c=p1.c+p1.b;
                    p2.step=p1.step+1;
                }
                if(!vist[p2.a][p2.b][p2.c])
                {
                    vist[p2.a][p2.b][p2.c]=1;
                    q.push(p2);
                }
            }
             
            if(p1.c!=0)
            {
                if(p1.c>a-p1.a)
                {
                    p2.c=p1.c-(a-p1.a);
                    p2.a=a;
                    p2.b=p1.b;
                    p2.step=p1.step+1;
                }
                else
                {
                    p2.c=0;
                    p2.a=p1.a+p1.c;
                    p2.b=p1.b;
                    p2.step=p1.step+1;
                }
                if(!vist[p2.a][p2.b][p2.c])
                {
                    vist[p2.a][p2.b][p2.c]=1;
                    q.push(p2);
                }
            }
             
            if(p1.c!=0)
            {
                if(p1.c>b-p1.b)
                {
                    p2.c=p1.c-(b-p1.b);
                    p2.a=p1.a;
                    p2.b=b;
                    p2.step=p1.step+1;
                }
                else
                {
                    p2.c=0;
                    p2.a=p1.a;
                    p2.b=p1.b+p1.c;
                    p2.step=p1.step+1;
                }
                if(!vist[p2.a][p2.b][p2.c])
                {
                    vist[p2.a][p2.b][p2.c]=1;
                    q.push(p2);
                }
            }
        }
        printf("NO
    ");
    }
    int main()
    {
        while(scanf("%d%d%d",&a,&b,&c)>0&&(a+b+c))
        {
            if(a%2==1)
            {
                printf("NO
    ");
                continue;
            }
            bfs();
        }
        return 0;
    }
    又在网上看到一个大佬用数论知识把这道题秒杀了,这里直接copy过来了,果然,数学牛逼真的是牛逼。地址https://blog.csdn.net/v5zsq/article/details/52097459
     
    设两个小瓶子容积分别为a,b,问题转化成通过两个小瓶子的若干次倒进或倒出操作得到(a+b)/2体积的可乐,设两个小瓶子被倒进或倒出x次和y次(这里的x和y是累加后的操作,即x=第一个瓶子倒出的次数-倒进的次数,y=第二个瓶子倒出的次数-倒进的次数),那么问题转化成: 

    所以|x+|y|的最小值为(c+d)/2,通过x和y的通解形式显然可以看出x和y一正一负,不妨设x<0,那么就是往第一个小瓶子倒进x次,第二个小瓶子倒出y次,但是由于瓶子容积有限,所以倒进倒出操作都是通过大瓶子来解决的,一次倒进操作后为了继续使用小瓶子还要将小瓶子中可乐倒回大瓶子中,倒出操作同理,所以总操作次数是(c+d)/2*2=c+d,但是注意最后剩下的(a+b)/2体积的可乐一定是放在两个小瓶子中较大的那个中,而不是再倒回到大瓶子中,所以操作数要减一,答案就是c+d-1
     
    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    #include<cmath>
    #include<cstdlib>
    #include<queue>
    #include<set>
    #include<vector>
    using namespace std;
    #define INF 0x3f3f3f3f
    #define eps 1e-10
    #define PI acos(-1.0)
    #define _e exp(1.0)
    #define ll long long
    int const maxn = 105;
    const int mod = 1e9 + 7;
    int gcd(int a, int b) {
        if (b == 0) return a;  return gcd(b, a % b);
    }
    
    int main()
    {
        int a,b,c;
        while(scanf("%d %d %d",&a,&b,&c)&&(a+b+c))
        {
            a/=gcd(b,c);
            if(a%2==1)
                puts("NO");
            else
                cout<<a-1<<endl;
        }
    }
  • 相关阅读:
    奥运圣火在家乡传递
    Please stop reinventing the wheel (请不要重复发明轮子)
    使用IDispatch::Invoke函数在C++中调用C#实现的托管类库方法
    To invoke and to begin invoke, that is a question.
    XML和JSON(JavaScript Object Notation)
    Cloud Computing Is a Big Whiteboard
    TRIE Data Structure
    ASP.NET AJAX UpdatePanel 控件实现剖析
    分布式计算、网格计算和云计算
    系统架构设计师考试大纲(2009版)
  • 原文地址:https://www.cnblogs.com/smallhester/p/9569201.html
Copyright © 2011-2022 走看看