zoukankan      html  css  js  c++  java
  • EXAM-2018-7-29

    EXAM-2018-7-29

    未完成
    • [ ] H
    • [ ] A

    D

    莫名TLE 不在循环里写strlen()就行了

    F

    相减特判 水题

    J

    模拟一下就可以发现规律,o(n)

    K

    每个数加一减一不变,用map,再从-1枚举,那个数出现最多就是答案

    I

    通过观察我们可以发现,我们只用维护每个间断点就可以。查询的时候就从最近那个间断点出发,乘以相差的时间再判断合法性就可以了。现在的问题是如何维护间断点。因为每次查询时它的初始值是不一样的,如果每次都从原点开始肯定会T,所以我们可以维护一个合法区间,一个从0开始,一个从X开始。

    #include <bits/stdc++.h>
    using namespace std;
    const int maxn=1e5+7;
    int s[maxn];
    int main(){
        int X;
        scanf("%d",&X);
        int n;
        scanf("%d",&n);
        for(int i=1;i<=n;i++){
            scanf("%d",&s[i]);
        }
        int k,time,x;
        int t=0,j=0,l=X,r=0,stage=-1,ans,aa=0;
        scanf("%d",&k);
        for(int i=1;i<=k;i++){
            scanf("%d%d",&time,&x);
            while(j<n&&s[j+1]<=time){
                ans=stage*(s[j+1]-t);
                l=max(0,min(X,l+ans));
                r=max(0,min(X,r+ans));
                t=s[j+1];
                stage=-stage;
                j++;
                aa+=ans;
                //cout<<ans<<endl;
            }
            int num=time-t;
            x=max(r,min(l,x+aa));
            x=max(0,min(X,x+stage*(num)));
            printf("%d
    ",x);
        }
     
        return 0;
    }
    

    B

    听学长讲的这道题,感觉思路很清晰。首先游戏有三种人:正常人,僵尸,感染者;游戏结束的条件是没有正常人。然后boss每轮会让一个人变成僵尸,僵尸会让是自己倍数的玩家感染。
    当初审题的时候就感觉特别乱,其实理清楚这道题就是一道普通的组合数学。如何让游戏结束,就是当RMB玩家(无法被他人感染)变成僵尸,其他的非RMB玩家可以说什么时候被感染不用去管,因为只有RMB玩家被全部变成僵尸游戏才结束。
    可以得出公式,我们枚举轮数,轮数跟RMB玩家最后被感染的位置有关。我们先在该位置上放一个RMB玩家,然后前面的C(座位数,RMB玩家-1),RMB跟非RMB与顺序有关,再乘以轮数,结果就出来了

    #include<bits/stdc++.h>
    #define ll long long
    #define met(a) memset(a, 0, sizeof(a))
    using namespace std;
    const int maxn=1e7+5,mod=1e9+7;
    ll l,r,n,cnt,fac[maxn],inv[maxn];
    bool isprime[maxn];
    ll qpow(ll x,ll k){
        ll ret=1;
        while(k){
            if(k&1) ret = (ret*x)%mod;
            x = x*x%mod;
            k>>=1;
        }
        return ret;
    }
    void init(){
        fac[0]=1;
        for(ll i=1;i<=n+1;i++) fac[i]=(fac[i-1]*i)%mod;
        inv[n+1]=qpow(fac[n+1],mod-2);
        for(ll i=n;i>=0;i--) inv[i]=(inv[i+1]*(i+1))%mod;
        for(int i=l;i<=r;i++){
            if(!isprime[i]) cnt++;
            for(int j=i+i;j<=r;j+=i)
              isprime[j]=1;
        }
        return ;
    }
    ll C(ll x,ll y){
        if(!x&&!y) return 1;
        if(x<y) return 0;
        return fac[x]*inv[y]%mod*inv[x-y]%mod;
    }
    int main(){
        scanf("%lld%lld",&l,&r);
        n=r-l+1;
        init();
        ll ans=0;
        for(ll i=l+cnt-1;i<=r;++i){
            ans = (ans+(i-l+1)*C(i-l,cnt-1)%mod*fac[cnt]%mod*fac[n-cnt]%mod)%mod;
            //cout<<C(i-l,cnt-1)%mod*fac[cnt]%mod*fac[n-cnt]%mod<<endl;
        }
        printf("%lld
    ",ans%mod);
        return 0;
    }
    
    

    然后这里面有一个基本的求组合数的模板:

    ll qpow(ll x,ll k){
        ll ret=1;
        while(k){
            if(k&1) ret = (ret*x)%mod;
            x = x*x%mod;
            k>>=1;
        }
        return ret;
    }
    void init(){
        fac[0]=1;
        for(ll i=1;i<=n+1;i++) fac[i]=(fac[i-1]*i)%mod;
        inv[n+1]=qpow(fac[n+1],mod-2);
        for(ll i=n;i>=0;i--) inv[i]=(inv[i+1]*(i+1))%mod;
        //for(int i=l;i<=r;i++){
        //    if(!isprime[i]) cnt++;
        //    for(int j=i+i;j<=r;j+=i)
        //      isprime[j]=1;
        //}
        return ;
    }
    ll C(ll x,ll y){
        if(!x&&!y) return 1;
        if(x<y) return 0;
        return fac[x]*inv[y]%mod*inv[x-y]%mod;
    }
    

    H

    现在中文题也看不懂了
    题目意思是可以交换单词里的字母,从而让所给的这几个单词构建的字典树节点最少。我们先假设:

    • 若一个单词构成字典树,则节点数为总字符数+1
    • 若两个单词构成字典树,则节点数为两个单词总字符数-相同字符数+1
    • 若三个或多个单词构成字典树,则节点数为多个单词总字符数-相同字符数+1?
      然鹅并不是
      假设三个单词:apple phy ppt 这么算的话节点数应该是11,但是正确答案是9.当apple跟ppt先组合,再与phy组合就是最优解,由此可见不能直接采用三种结合的方法。我们可以两两组合,然后再递推。从而想到状态压缩DP
      准备状态压缩从零开始
    #include<bits/stdc++.h>
    #define ll long long
    using namespace std;
    const int maxn=1e6+7;
    char str[maxn];
    int cnt[20][200],ans[205];
    int main(){
        int n,len;
        scanf("%d",&n);
        for(int i=1;i<=n;i++){
            scanf("%s",str);
            len=strlen(str);
            for(int j=0;j<len;j++){
                cnt[i][str[j]]++;
            }
        }
        int k=(1<<n)-1;
        int f[k+5];
        memset(f,0,sizeof(f));
        for(int i=1;i<=k;i++){//枚举所有状态
            memset(ans,0x3f,sizeof(ans));
            for(int j=1;j<=n;j++){
                if(i&(1<<(j-1))){
                    for(int aa='a';aa<='z';aa++){
                        ans[aa]=min(cnt[j][aa],ans[aa]);//每个字母在这个状态出现最少次数
                        f[i]+=cnt[j][aa];
                    }
                }
            }
            int sum=0;
            for(int aa='a';aa<='z';aa++) sum+=ans[aa];
            for(int z=i&(i-1);z;z=i&(z-1)){//状态转移 递推
                f[i]=min(f[i],f[i^z]+f[z]-sum);
            }
        }
        printf("%d
    ",f[k]+1);
        return 0;
    }
    
    

    这里有两种枚举:

    • 二进制枚举:
    int k=(1<<n)-1;
        for(int i=1;i<=k;i++){//枚举所有状态
            for(int j=1;j<=n;j++) if(i&(1<<(j-1))){
    
    • 枚举子集:
    for(int z=i&(i-1);z;z=i&(z-1)){
    

    地址EXAM-2018-7-29

    不要忘记努力,不要辜负自己 欢迎指正 QQ:1468580561
  • 相关阅读:
    mysql低版本升级到5.7
    mysql权限管理
    本地代码推送到远程git仓库
    解决ie低版本不认识html5标签
    使用ssh远程访问github
    centos7使用kubeadm搭建kubernetes集群
    js es6深入应用系列(Generator)
    js console一些常用的功能
    重新整理.net core 计1400篇[五] (.net core 修改为Startup模式 )
    重新整理.net core 计1400篇[五] (.net core 添加mvc 中间件 )
  • 原文地址:https://www.cnblogs.com/smallocean/p/9391399.html
Copyright © 2011-2022 走看看