zoukankan      html  css  js  c++  java
  • 高可用的MongoDB集群-实战篇

    1.概述

      最近有同学和网友私信我,问我MongoDB方面的问题;这里我整理一篇博客来赘述下MongoDB供大家学习参考,博客的目录内容如下:

    • 基本操作
    • CRUD
    • MapReduce

      本篇文章是基于MongoDB集群(Sharding+Replica Sets)上演示的,故操作的内容都是集群层面的,所以有些命令和单独的使用MongoDB库有异样。具体集群搭建可以参考我写的《高可用的MongoDB集群》。

    2.基本操作

      常用的 Shell 命令如下所示:

    db.help()    # 数据库帮助
    db.collections.help()    # 集合帮助
    rs.help()    # help on replica set
    show dbs    # 展示数据库名
    show collections    # 展示collections在当前库
    use db_name    # 选择数据库

      查看集合基本信息,内容如下所示:

    #查看帮助  
    db.yourColl.help(); 
    
    #查询当前集合的数据条数  
    db.yourColl.count(); 
    
    #查看数据空间大小 
    db.userInfo.dataSize(); 
    
    #得到当前聚集集合所在的
    db db.userInfo.getDB(); 
    
    #得到当前聚集的状态 
    db.userInfo.stats(); 
    
    #得到聚集集合总大小 
    db.userInfo.totalSize(); 
    
    #聚集集合储存空间大小 
    db.userInfo.storageSize(); 
    
    #Shard版本信息  
    db.userInfo.getShardVersion() 
    
    #聚集集合重命名,将userInfo重命名为users
    db.userInfo.renameCollection("users"); 
     
    #删除当前聚集集合 
    db.userInfo.drop();

    3.CRUD

    3.1创建

      在集群中,我们增加一个 friends 库,命令如下所示:

    db.runCommand({enablesharding:"friends"});

      在库新建后,我们在该库下创建一个user分片,命令如下:

    db.runCommand( { shardcollection : "friends. user"});

    3.2新增

      在MongoDB中,save和insert都能达到新增的效果。但是这两者是有区别的,在save函数中,如果原来的对象不存在,那他们都可以向collection里插入数据;如果已经存在,save会调用update更新里面的记录,而insert则会忽略操作。

      另外,在insert中可以一次性插叙一个列表,而不用遍历,效率高,save则需要遍历列表,一个个插入,下面我们可以看下两个函数的原型,通过函数原型我们可以看出,对于远程调用来说,是一次性将整个列表post过来让MongoDB去处理,效率会高些。

      Save函数原型如下所示:

      Insert函数原型(部分代码)如下所示:

    3.3查询

    3.3.1查询所有记录

    db. user.find();

      默认每页显示20条记录,当显示不下的情况下,可以用it迭代命令查询下一页数据。注意:键入it命令不能带“;” 但是你可以设置每页显示数据的大小,用DBQuery.shellBatchSize= 50;这样每页就显示50条记录了。

    3.3.2查询去掉后的当前聚集集合中的某列的重复数据

    db. user.distinct("name"); 
    
    #会过滤掉name中的相同数据 相当于:
    select distict name from user;

    3.3.3查询等于条件数据

    db.user.find({"age": 24}); 
    #相当于:
    select * from user where age = 24;

    3.3.4查询大于条件数据

    db.user.find({age: {$gt: 24}}); 
    
    # 相当于:
    select * from user where age >24;

    3.3.5查询小于条件数据

    db.user.find({age: {$lt: 24}}); 
    #相当于:
    select * from user where age < 24;

    3.3.6查询大于等于条件数据

    db.user.find({age: {$gte: 24}}); 
    #相当于:
    select * from user where age >= 24;

    3.3.7查询小于等于条件数据

    db.user.find({age: {$lte: 24}}); 
    #相当于:
    select * from user where age <= 24;

    3.3.8查询AND和OR条件数据

    • AND
    db.user.find({age: {$gte: 23, $lte: 26}});
    
    #相当于
    select * from user where age >=23 and age <= 26;
    • OR

    db.user.find({$or: [{age: 22}, {age: 25}]}); 
    
    #相当于:
    select * from user where age = 22 or age = 25;

    3.3.9模糊查询

    db.user.find({name: /mongo/}); 
    
    #相当于%% 
    select * from user where name like '%mongo%';

    3.3.10开头匹配

    db.user.find({name: /^mongo/}); 
    # 与SQL中得like语法类似
    select * from user where name like 'mongo%';

    3.3.11指定列查询

    db.user.find({}, {name: 1, age: 1}); 
    
    #相当于:
    select name, age from user;

      当然name也可以用true或false,当用ture的情况下和name:1效果一样,如果用false就是排除name,显示name以外的列信息。

    3.3.12指定列查询+条件查询

    db.user.find({age: {$gt: 25}}, {name: 1, age: 1}); 
    
    #相当于:
    select name, age from user where age > 25;

     db.user.find({name: 'zhangsan', age: 22});

     #相当于:

     select * from user where name = 'zhangsan' and age = 22;

    3.3.13排序

    #升序:
    db.user.find().sort({age: 1});
    #降序:
    db.
    user.find().sort({age: -1});

    3.3.14查询5条数据

    db.user.find().limit(5); 
    
    #相当于:
    select * from user limit 5;

    3.3.15N条以后数据

    db.user.find().skip(10); 
    
    #相当于:
    select * from user where id not in ( select * from user limit 5 );

    3.3.16在一定区域内查询记录

    #查询在5~10之间的数据
    db.user.find().limit(10).skip(5);

      可用于分页,limit是pageSize,skip是第几页*pageSize。

    3.3.17COUNT

    db.user.find({age: {$gte: 25}}).count(); 
    
    #相当于:
    select count(*) from user where age >= 20;

    3.3.18安装结果集排序

    db.userInfo.find({sex: {$exists: true}}).sort(); 

    3.3.19不等于NULL

    db.user.find({sex: {$ne: null}}) 
    
    #相当于:
    select * from user where sex not null;

    3.4索引

      创建索引,并指定主键字段,命令内容如下所示:

    db.epd_favorites_folder.ensureIndex({"id":1},{"unique":true,"dropDups":true})
    db.epd_focus.ensureIndex({"id":1},{"unique":true,"dropDups":true})

    3.5更新

      update命令格式,如下所示:

    db.collection.update(criteria,objNew,upsert,multi) 

      参数说明: criteria:

      查询条件 objNew:update对象和一些更新操作符

      upsert:如果不存在update的记录,是否插入objNew这个新的文档,true为插入,默认为false,不插入。

      multi:默认是false,只更新找到的第一条记录。如果为true,把按条件查询出来的记录全部更新。

      下面给出一个示例,更新id为 1 中 price 的值,内容如下所示:

    db. user.update({id: 1},{$set:{price:2}});  
    
    #相当于:
    update user set price=2 where id=1;

    3.6删除

    3.6.1删除指定记录

    db. user. remove( { id:1 } );  
    
    #相当于:
    delete from user where id=1;

    3.6.2删除所有记录

    db. user. remove( { } );  
    
    #相当于:
    delete from user;

    3.6.3DROP

    db. user. drop();  
    
    #相当于:
    drop table user;

    4.MapReduce

      MongoDB中的 MapReduce 是编写JavaScript脚本,然后由MongoDB去解析执行对应的脚本,下面给出 Java API 操作MR。代码如下所示:

      MongdbManager类,用来初始化MongoDB:

    package cn.mongo.util;
    
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    
    import com.mongodb.DB;
    import com.mongodb.Mongo;
    import com.mongodb.MongoOptions;
    
    /**
     * @Date Mar 3, 2015
     * 
     * @author dengjie
     * 
     * @Note mongodb manager
     */
    public class MongdbManager {
    
        private static final Logger logger = LoggerFactory.getLogger(MongdbManager.class);
        private static Mongo mongo = null;
        private static String tag = SystemConfig.getProperty("dev.tag");
    
        private MongdbManager() {
        }
    
        static {
            initClient();
        }
    
        // get DB object
        public static DB getDB(String dbName) {
            return mongo.getDB(dbName);
        }
    
        // get DB object without param
        public static DB getDB() {
            String dbName = SystemConfig.getProperty(String.format("%s.mongodb.dbname", tag));
            return mongo.getDB(dbName);
        }
    
        // init mongodb pool
        private static void initClient() {
            try {
                String[] hosts = SystemConfig.getProperty(String.format("%s.mongodb.host", tag)).split(",");
                for (int i = 0; i < hosts.length; i++) {
                    try {
                        String host = hosts[i].split(":")[0];
                        int port = Integer.parseInt(hosts[i].split(":")[1]);
                        mongo = new Mongo(host, port);
                        if (mongo.getDatabaseNames().size() > 0) {
                            logger.info(String.format("connection success,host=[%s],port=[%d]", host, port));
                            break;
                        }
                    } catch (Exception ex) {
                        ex.printStackTrace();
                        logger.error(String.format("create connection has error,msg is %s", ex.getMessage()));
                    }
                }
    
                // 设置连接池的信息
                MongoOptions opt = mongo.getMongoOptions();
                opt.connectionsPerHost = SystemConfig.getIntProperty(String.format("%s.mongodb.poolsize", tag));// poolsize
                opt.threadsAllowedToBlockForConnectionMultiplier = SystemConfig.getIntProperty(String.format(
                        "%s.mongodb.blocksize", tag));// blocksize
                opt.socketKeepAlive = true;
                opt.autoConnectRetry = true;
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
    }

      MongoDBFactory类,用来封装操作业务代码,具体内容如下所示:

    package cn.mongo.util;
    
    import java.util.ArrayList;
    import java.util.List;
    
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    
    import cn.diexun.domain.MGDCustomerSchema;
    
    import com.mongodb.BasicDBList;
    import com.mongodb.DB;
    import com.mongodb.DBCollection;
    import com.mongodb.DBObject;
    import com.mongodb.util.JSON;
    
    /**
     * @Date Mar 3, 2015
     *
     * @Author dengjie
     */
    public class MongoDBFactory {
    
        private static Logger logger = LoggerFactory.getLogger(MongoDBFactory.class);
    
        // save data to mongodb
        public static void save(MGDCustomerSchema mgs, String collName) {
            DB db = null;
            try {
                db = MongdbManager.getDB();
                DBCollection coll = db.getCollection(collName);
                DBObject dbo = (DBObject) JSON.parse(mgs.toString());
                coll.insert(dbo);
            } catch (Exception ex) {
                ex.printStackTrace();
                logger.error(String.format("save object to mongodb has error,msg is %s", ex.getMessage()));
            } finally {
                if (db != null) {
                    db.requestDone();
                    db = null;
                }
            }
        }
    
        // batch insert
        public static void save(List<?> mgsList, String collName) {
            DB db = null;
            try {
                db = MongdbManager.getDB();
                DBCollection coll = db.getCollection(collName);
                BasicDBList data = (BasicDBList) JSON.parse(mgsList.toString());
                List<DBObject> list = new ArrayList<DBObject>();
                int commitSize = SystemConfig.getIntProperty("mongo.commit.size");
                int rowCount = 0;
                long start = System.currentTimeMillis();
                for (Object dbo : data) {
                    rowCount++;
                    list.add((DBObject) dbo);
                    if (rowCount % commitSize == 0) {
                        try {
                            coll.insert(list);
                            list.clear();
                            logger.info(String.format("current commit rowCount = [%d],commit spent time = [%s]s", rowCount,
                                    (System.currentTimeMillis() - start) / 1000.0));
                        } catch (Exception ex) {
                            ex.printStackTrace();
                            logger.error(String.format("batch commit data to mongodb has error,msg is %s", ex.getMessage()));
                        }
                    }
                }
                if (rowCount % commitSize != 0) {
                    try {
                        coll.insert(list);
                        logger.info(String.format("insert data to mongo has spent total time = [%s]s",
                                (System.currentTimeMillis() - start) / 1000.0));
                    } catch (Exception ex) {
                        ex.printStackTrace();
                        logger.error(String.format("commit end has error,msg is %s", ex.getMessage()));
                    }
                }
            } catch (Exception ex) {
                ex.printStackTrace();
                logger.error(String.format("save object list to mongodb has error,msg is %s", ex.getMessage()));
            } finally {
                if (db != null) {
                    db.requestDone();
                    db = null;
                }
            }
        }
    }

      LoginerAmountMR类,这是一个统计登录用户数的MapReduce计算类,代码如下:

    package cn.mongo.mapreduce;
    
    import java.sql.Timestamp;
    import java.util.ArrayList;
    import java.util.Date;
    import java.util.List;
    
    import org.bson.BSONObject;
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    
    import cn.diexun.conf.ConfigureAPI.MR;
    import cn.diexun.conf.ConfigureAPI.PRECISION;
    import cn.diexun.domain.Kpi;
    import cn.diexun.util.CalendarUtil;
    import cn.diexun.util.MongdbManager;
    import cn.diexun.util.MysqlFactory;
    
    import com.mongodb.DB;
    import com.mongodb.DBCollection;
    import com.mongodb.DBCursor;
    import com.mongodb.DBObject;
    import com.mongodb.MapReduceOutput;
    import com.mongodb.ReadPreference;
    
    /**
     * @Date Mar 13, 2015
     * 
     * @Author dengjie
     * 
     * @Note use mr jobs stats user login amount
     */
    public class LoginerAmountMR {
        private static Logger logger = LoggerFactory.getLogger(LoginerAmountMR.class);
    
       // map 函数JS字符串拼接
    private static String map() { String map = "function(){"; map += "if(this.userName != ""){"; map += "emit({" + "kpi_code:'login_times',username:this.userName," + "district_id:this.districtId,product_style:this.product_style," + "customer_property:this.customer_property},{count:1});"; map += "}"; map += "}"; return map; }
      
    private static String reduce() { String reduce = "function(key,values){"; reduce += "var total = 0;"; reduce += "for(var i=0;i<values.length;i++){"; reduce += "total += values[i].count;}"; reduce += "return {count:total};"; reduce += "}"; return reduce; }
      // reduce 函数字符串拼接
    public static void main(String[] args) { loginNumbers("t_login_20150312"); } /** * login user amount * * @param collName */ public static void loginNumbers(String collName) { DB db = null; try { db = MongdbManager.getDB(); db.setReadPreference(ReadPreference.secondaryPreferred()); DBCollection coll = db.getCollection(collName); String result = MR.COLLNAME_TMP; long start = System.currentTimeMillis(); MapReduceOutput mapRed = coll.mapReduce(map(), reduce(), result, null); logger.info(String.format("mr run spent time=%ss", (System.currentTimeMillis() - start) / 1000.0)); start = System.currentTimeMillis(); DBCursor cursor = mapRed.getOutputCollection().find(); List<Kpi> list = new ArrayList<Kpi>(); while (cursor.hasNext()) { DBObject obj = cursor.next(); BSONObject key = (BSONObject) obj.get("_id"); BSONObject value = (BSONObject) obj.get("value"); Object kpiValue = value.get("count"); Object userName = key.get("username"); Object districtId = key.get("district_id"); Object customerProperty = key.get("customer_property"); Object productStyle = key.get("product_style"); Kpi kpi = new Kpi(); try { kpi.setUserName(userName == null ? "" : userName.toString()); kpi.setKpiCode(key.get("kpi_code").toString()); kpi.setKpiValue(Math.round(Double.parseDouble(kpiValue.toString()))); kpi.setCustomerProperty(customerProperty == null ? "" : customerProperty.toString()); kpi.setDistrictId(districtId == "" ? 0 : Integer.parseInt(districtId.toString())); kpi.setProductStyle(productStyle == null ? "" : productStyle.toString()); kpi.setCreateDate(collName.split("_")[2]); kpi.setUpdateDate(Timestamp.valueOf(CalendarUtil.formatMap.get(PRECISION.HOUR).format(new Date()))); list.add(kpi); } catch (Exception exx) { exx.printStackTrace(); logger.error(String.format("parse type or get value has error,msg is %s", exx.getMessage())); } } MysqlFactory.insert(list); logger.info(String.format("store mysql spent time is %ss", (System.currentTimeMillis() - start) / 1000.0)); } catch (Exception ex) { ex.printStackTrace(); logger.error(String.format("run map-reduce jobs has error,msg is %s", ex.getMessage())); } finally { if (db != null) { db.requestDone(); db = null; } } } }

    5.总结

      在计算 MongoDB 的MapReduce计算的时候,拼接JavaScript字符串时需要谨慎小心,很容易出错,上面给出的代码只是一部分代码,供参考学习使用;另外,若是要做MapReduce任务计算,推荐使用Hadoop的MapReduce计算框架,MongoDB的MapReduce框架这里仅做介绍学习了解。

    6.结束语

      这篇博客就和大家分享到这里,若是大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!

  • 相关阅读:
    Friends ZOJ
    2^x mod n = 1 HDU
    Paint the Grid Reloaded ZOJ
    Treap 模板
    bzoj进度条
    。。。
    bzoj
    。。。
    bzoj
    题解continue
  • 原文地址:https://www.cnblogs.com/smartloli/p/4421776.html
Copyright © 2011-2022 走看看