zoukankan      html  css  js  c++  java
  • Kafka实战-Kafka到Storm

    1.概述

      在《Kafka实战-Flume到Kafka》一文中给大家分享了Kafka的数据源生产,今天为大家介绍如何去实时消费Kafka中的数据。这里使用实时计算的模型——Storm。下面是今天分享的主要内容,如下所示:

    • 数据消费
    • Storm计算
    • 预览截图

      接下来,我们开始分享今天的内容。

    2.数据消费

      Kafka的数据消费,是由Storm去消费,通过KafkaSpout将数据输送到Storm,然后让Storm安装业务需求对接受的数据做实时处理,下面给大家介绍数据消费的流程图,如下图所示:

      从图可以看出,Storm通过KafkaSpout获取Kafka集群中的数据,在经过Storm处理后,结果会被持久化到DB库中。

    3.Storm计算

      接着,我们使用Storm去计算,这里需要体检搭建部署好Storm集群,若是未搭建部署集群,大家可以参考我写的《Kafka实战-Storm Cluster》。这里就不多做赘述搭建的过程了,下面给大家介绍实现这部分的代码,关于KafkaSpout的代码如下所示:

    • KafkaSpout类:
    package cn.hadoop.hdfs.storm;
    
    import java.util.HashMap;
    import java.util.List;
    import java.util.Map;
    import java.util.Properties;
    
    import org.slf4j.Logger;
    import org.slf4j.LoggerFactory;
    
    import cn.hadoop.hdfs.conf.ConfigureAPI.KafkaProperties;
    import kafka.consumer.Consumer;
    import kafka.consumer.ConsumerConfig;
    import kafka.consumer.ConsumerIterator;
    import kafka.consumer.KafkaStream;
    import kafka.javaapi.consumer.ConsumerConnector;
    import backtype.storm.spout.SpoutOutputCollector;
    import backtype.storm.task.TopologyContext;
    import backtype.storm.topology.IRichSpout;
    import backtype.storm.topology.OutputFieldsDeclarer;
    import backtype.storm.tuple.Fields;
    import backtype.storm.tuple.Values;
    
    /**
     * @Date Jun 10, 2015
     *
     * @Author dengjie
     *
     * @Note Data sources using KafkaSpout to consume Kafka
     */
    public class KafkaSpout implements IRichSpout {
    
        /**
         * 
         */
        private static final long serialVersionUID = -7107773519958260350L;
        private static final Logger LOGGER = LoggerFactory.getLogger(KafkaSpout.class);
    
        SpoutOutputCollector collector;
        private ConsumerConnector consumer;
        private String topic;
    
        private static ConsumerConfig createConsumerConfig() {
            Properties props = new Properties();
            props.put("zookeeper.connect", KafkaProperties.ZK);
            props.put("group.id", KafkaProperties.GROUP_ID);
            props.put("zookeeper.session.timeout.ms", "40000");
            props.put("zookeeper.sync.time.ms", "200");
            props.put("auto.commit.interval.ms", "1000");
            return new ConsumerConfig(props);
        }
    
        public KafkaSpout(String topic) {
            this.topic = topic;
        }
    
        public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
            this.collector = collector;
        }
    
        public void close() {
            // TODO Auto-generated method stub
    
        }
    
        public void activate() {
            this.consumer = Consumer.createJavaConsumerConnector(createConsumerConfig());
            Map<String, Integer> topickMap = new HashMap<String, Integer>();
            topickMap.put(topic, new Integer(1));
            Map<String, List<KafkaStream<byte[], byte[]>>> streamMap = consumer.createMessageStreams(topickMap);
            KafkaStream<byte[], byte[]> stream = streamMap.get(topic).get(0);
            ConsumerIterator<byte[], byte[]> it = stream.iterator();
            while (it.hasNext()) {
                String value = new String(it.next().message());
                LOGGER.info("(consumer)==>" + value);
                collector.emit(new Values(value), value);
            }
        }
    
        public void deactivate() {
            // TODO Auto-generated method stub
    
        }
    
        public void nextTuple() {
            // TODO Auto-generated method stub
    
        }
    
        public void ack(Object msgId) {
            // TODO Auto-generated method stub
    
        }
    
        public void fail(Object msgId) {
            // TODO Auto-generated method stub
    
        }
    
        public void declareOutputFields(OutputFieldsDeclarer declarer) {
            declarer.declare(new Fields("KafkaSpout"));
        }
    
        public Map<String, Object> getComponentConfiguration() {
            // TODO Auto-generated method stub
            return null;
        }
    
    }
    • KafkaTopology类:
    package cn.hadoop.hdfs.storm.client;
    
    import cn.hadoop.hdfs.storm.FileBlots;
    import cn.hadoop.hdfs.storm.KafkaSpout;
    import cn.hadoop.hdfs.storm.WordsCounterBlots;
    import backtype.storm.Config;
    import backtype.storm.LocalCluster;
    import backtype.storm.StormSubmitter;
    import backtype.storm.topology.TopologyBuilder;
    import backtype.storm.tuple.Fields;
    
    /**
     * @Date Jun 10, 2015
     *
     * @Author dengjie
     *
     * @Note KafkaTopology Task
     */
    public class KafkaTopology {
        public static void main(String[] args) {
            TopologyBuilder builder = new TopologyBuilder();
            builder.setSpout("testGroup", new KafkaSpout("test"));
            builder.setBolt("file-blots", new FileBlots()).shuffleGrouping("testGroup");
            builder.setBolt("words-counter", new WordsCounterBlots(), 2).fieldsGrouping("file-blots", new Fields("words"));
            Config config = new Config();
            config.setDebug(true);
            if (args != null && args.length > 0) {
                // online commit Topology
                config.put(Config.NIMBUS_HOST, args[0]);
                config.setNumWorkers(3);
                try {
                    StormSubmitter.submitTopologyWithProgressBar(KafkaTopology.class.getSimpleName(), config,
                            builder.createTopology());
                } catch (Exception e) {
                    e.printStackTrace();
                }
            } else {
                // Local commit jar
                LocalCluster local = new LocalCluster();
                local.submitTopology("counter", config, builder.createTopology());
                try {
                    Thread.sleep(60000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                local.shutdown();
            }
        }
    }

    4.预览截图

      首先,我们启动Kafka集群,目前未生产任何消息,如下图所示:

      接下来,我们启动Flume集群,开始收集日志信息,将数据输送到Kafka集群,如下图所示:

      接下来,我们启动Storm UI来查看Storm提交的任务运行状况,如下图所示:

      最后,将统计的结果持久化到Redis或者MySQL等DB中,结果如下图所示:

    5.总结

      这里给大家分享了数据的消费流程,并且给出了持久化的结果预览图,关于持久化的细节,后面有单独有一篇博客会详细的讲述,给大家分享其中的过程,这里大家熟悉下流程,预览结果即可。

    6.结束语

      这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!

  • 相关阅读:
    iptables 常用命令解析
    iptables 常用处理动作
    centos7 中iptables、firewalld 和 netfilter 的关系
    iptables 的几个状态
    centos7 中没有service iptables save指令来保存防火墙规则
    iptables 数据走向流程
    数据库PDO简介
    php连接mySql,加密函数
    php数组,常量,遍历等
    php的会话控制
  • 原文地址:https://www.cnblogs.com/smartloli/p/4632644.html
Copyright © 2011-2022 走看看