zoukankan      html  css  js  c++  java
  • week 4 ridge regression

    coursera 上的 华盛顿大学 machine learning: regression 第四周笔记

    通常, 过拟合的一个表现是拟合模型的参数很大

    为了防止过拟合

    Total cost = measure of fit + measure of magnitude of coefficients

    前者描述训练集拟合程度,后者评估回归模型系数大小,小则不会过拟合。

    评估训练集拟合程度( measure of fit ):

        

      RSS(w) 越小,拟合程度越好。

    评估回归模型系数(measure of magnitude of coefficients):

    (1)系数绝对值之和 |w|, L1范数

    (2)系数平方和 ||w||2L2范数 

    岭回归计算回归系数时使( RSS(w)+λ||w||2 )最小

        其中λ为平衡训练集拟合程度 和 拟合系数大小 的调整参数。

    λ的选择上体现了 bias-variance tradeoff:

    对于大的λ:high bias, low variance

    对于小的λ:low bias, high variance

    如何确定 λ 大小

      理想条件下(数据集足够大):

            

      training set: 训练集用于拟合回归模型

      validation set: 检测系数大小,用于确定λ

      test set: 测试集,计算泛化误差(generalization error)

      

      实际情况下,数据集有限,常用方法有:

         K - fold cross validation

        步骤:

        对于每一个需要评估的 λ:

          将数据集分为training set test set

          将其中training set 打乱顺序(随机排序),分成 k 等分。

          k 次循环,每次将k等份中其中一份作为 validation set, 剩下部分作为 training set

          每次根据validation set 计算 error (λ), 结果为k次计算的平均值。

          average (error (λ))最小的为最合适的λ

    梯度下降法求回归系数:

    total cost = RSS(w)+λ||w||2

    Cost(w)= SUM[ (prediction - output)^2 ]+ l2_penalty*(w[0]^2 + w[1]^2 + ... + w[k]^2).

    导:

    derivative = 2*SUM[ error*[feature_i] ] + 2*l2_penalty*w[i].

    (其中没有2*l2_penalty*w[0]这一项)

    每次迭代:

     predictions = predict_output(feature_matrix, weights)
     errors = predictions - output
    for i in xrange(len(weights)): feature = feature_matrix[:, i] derivative = compute_derivative_ridge(errors, feature, weights[i], l2_penalty)
    weights[i]
    = weights[i] - step_size * derivative
  • 相关阅读:
    SAP PI 如何实现消息定义查询
    EWM与ERP交互程序
    ITS Mobile Template interpretation failed. Template does not exist
    SAP Material Flow System (MFS) 物料流系统简介
    SAP EWM Table list
    EWM RF 屏幕增强
    SAP EWM TCODE list
    SAP扩展仓库管理(SAPEWM)在线研讨会笔记
    ERP与EWM集成配置ERP端组织架构(二)
    EWM RF(Radio Frequency)简介
  • 原文地址:https://www.cnblogs.com/smartweed/p/8486059.html
Copyright © 2011-2022 走看看