zoukankan      html  css  js  c++  java
  • LA 6972 Domination

    6972 Domination Edward is the headmaster of Marjar University. He is enthusiastic about chess and often plays chess with his friends. What’s more, he bought a large decorative chessboard with N rows and M columns. Every day after work, Edward will place a chess piece on a random empty cell. A few days later, he found the chessboard was dominated by the chess pieces. That means there is at least one chess piece in every row. Also, there is at least one chess piece in every column. “That’s interesting!” Edward said. He wants to know the expectation number of days to make an empty chessboard of N × M dominated. Please write a program to help him. Input There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case: There are only two integers N and M (1 ≤ N, M ≤ 50). Output For each test case, output the expectation number of days. Any solution with a relative or absolute error of at most 10−8 will be accepted. Sample Input 2 1 3 2 2 Sample Output 3.000000000000 2.666666666667

    题意:题意:
    给一个n*m的矩阵,每天随机的在未放棋子的格子上放一个棋子。求每行至少有一个棋子,每列至少有一个棋子的天数的期望
     (1 <= NM <= 50). 

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cstdlib>
    #include <cmath>
    #include <vector>
    #include <queue>
    #include <stack>
    #include <map>
    #include <algorithm>
    #include <set>
    using namespace std;
    typedef long long ll;
    typedef unsigned long long Ull;
    #define MM(a,b) memset(a,b,sizeof(a));
    #define SC  scanf
    #define CT continue
    const double eps = 1e-10;
    const int inf = 0x3f3f3f3f;
    const double pi=acos(-1);
    const int mod=100000000;
    
    double dp[55][55][2505];
    int main()
    {
        int cas,n,m;SC("%d",&cas);
        while(cas--){
            SC("%d%d",&n,&m);
            MM(dp,0);
            dp[0][0][0]=1;
            dp[1][1][1]=1;
            for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
            for(int k=max(i,j);k<=i*j;k++){
                int t=n*m-(k-1);
                double p1=dp[i][j][k-1]*(i*j-(k-1))/t;
                double p2=dp[i-1][j][k-1]*(n-(i-1))*j/t;
                double p3=dp[i][j-1][k-1]*(m-(j-1))*i/t;
                double p4=dp[i-1][j-1][k-1]*(n-(i-1))*(m-(j-1))/t;
                dp[i][j][k]=p1+p2+p3+p4;
            }
            double ans=0;
            for(int i=max(n,m);i<=n*m;i++)
                ans+=i*(dp[n][m][i]-dp[n][m][i-1]);
            printf("%.12f
    ",ans);
        }
        return 0;
    }
    

      题解:

  • 相关阅读:
    kill -3 导出 thread dump
    JVM中锁优化,偏向锁、自旋锁、锁消除、锁膨胀
    Hibernate validator验证
    java子类实例初始化过程
    spring- properties 读取的五种方式
    Spring连接数据库的几种常用的方式
    缓存使用中的注意事项
    java动态代理原理
    classpath目录
    springmvc常用注解标签详解
  • 原文地址:https://www.cnblogs.com/smilesundream/p/5939198.html
Copyright © 2011-2022 走看看