D. Iterated Linear Function
time limit per test
1 secondmemory limit per test
256 megabytesinput
standard inputoutput
standard outputConsider a linear function f(x) = Ax + B. Let's define g(0)(x) = x and g(n)(x) = f(g(n - 1)(x))for n > 0. For the given integer values A, B, n and x find the value of g(n)(x) modulo 109 + 7.
Input
The only line contains four integers A, B, n and x (1 ≤ A, B, x ≤ 109, 1 ≤ n ≤ 1018) — the parameters from the problem statement.
Note that the given value n can be too large, so you should use 64-bit integer type to store it. In C++ you can use the long long integer type and in Java you can use long integer type.
Output
Print the only integer s — the value g(n)(x) modulo 109 + 7.
Examples
input
3 4 1 1
output
7
input
3 4 2 1
output
25
input
3 4 3 1
output
79
#include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <vector> #include <queue> #include <map> #include <algorithm> #include <set> using namespace std; #define MM(a,b) memset(a,b,sizeof(a)) #define SC scanf #define PF printf #define CT continue typedef long long ll; typedef unsigned long long ULL; const int mod = 1000000007; const double eps = 1e-10; const int inf = 0x3f3f3f3f; const int N=2*1e5+10; ll quick(ll a,ll n) { ll res=1; while(n){ if(n&1) res=(res*a)%mod; a=(a*a)%mod; n>>=1; } return res; } ll yuan(ll n) { return quick(n,mod-2); } int main() { ll a,b,n,x; while(~SC("%lld%lld%lld%lld",&a,&b,&n,&x)){ ll ans=0; ans+=quick(a,n)*x%mod; ans+=b*(quick(a,n)-1)%mod*yuan(a-1)%mod; PF("%lld ",ans); } return 0; }
逆元求法:利用费马小定理
http://blog.csdn.net/qq_21057881/article/details/51758437