zoukankan      html  css  js  c++  java
  • 基于mykernel 2.0编写一个操作系统内核

    一、 实验要求

    • 1、按照https://github.com/mengning/mykernel 的说明配置mykernel 2.0,熟悉Linux内核的编译;

    • 2、基于mykernel 2.0编写一个操作系统内核,参照https://github.com/mengning/mykernel 提供的范例代码

    • 3、简要分析操作系统内核核心功能及运行工作机制

    二、实验流程

      1、配置mykernel 2.0

      

    wget https://raw.github.com/mengning/mykernel/master/mykernel-2.0_for_linux-5.4.34.patch
    sudo apt install axel
    axel -n 20 https://mirrors.edge.kernel.org/pub/linux/kernel/v5.x/linux-5.4.34.tar.xz
    xz -d linux-5.4.34.tar.xz
    tar -xvf linux-5.4.34.tar
    cd linux-5.4.34
    patch -p1 < ../mykernel-2.0_for_linux-5.4.34.patch
    sudo apt install build-essential libncurses-dev bison flex libssl-dev libelf-dev
    make defconfig 
    make -j$(nproc) 
    sudo apt install qemu 
    qemu-system-x86_64 -kernel arch/x86/boot/bzImage
    

      

       查看linux-5.4.34/mykernel目录存在 mymain.c和myinterrupt.c:

     mymain.c:

     myinterrupt.c

      2、基于mykernel 2.0编写一个操作系统内核

    首先编写mypcb.h文件,代码如下:

    #define MAX_TASK_NUM        4
    #define KERNEL_STACK_SIZE   1024*2
    /* CPU-specific state of this task */
    struct Thread {
        unsigned long        ip;
        unsigned long        sp;
    };
     
    typedef struct PCB{
        int pid;
        volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
        unsigned long stack[KERNEL_STACK_SIZE];
        /* CPU-specific state of this task */
        struct Thread thread;
        unsigned long    task_entry;
        struct PCB *next;
    }tPCB;
     
    void my_schedule(void);
    

      接下来修改myinterrupt.c文件:

    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    #include "mypcb.h"
    
    extern tPCB task[MAX_TASK_NUM];
    extern tPCB * my_current_task;
    extern volatile int my_need_sched;
    volatile int time_count = 0;
    
    /*
     * Called by timer interrupt.
     * it runs in the name of current running process,
     * so it use kernel stack of current running process
     */
    void my_timer_handler(void)
    {
        if(time_count%1000 == 0 && my_need_sched != 1)
        {
            printk(KERN_NOTICE ">>>my_timer_handler here<<<
    ");
            my_need_sched = 1;
        } 
        time_count ++ ;  
        return;      
    }
    
    void my_schedule(void)
    {
        tPCB * next;
        tPCB * prev;
    
        if(my_current_task == NULL 
            || my_current_task->next == NULL)
        {
            return;
        }
        printk(KERN_NOTICE ">>>my_schedule<<<
    ");
        /* schedule */
        next = my_current_task->next;
        prev = my_current_task;
        if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
        {        
            my_current_task = next; 
            printk(KERN_NOTICE ">>>switch %d to %d<<<
    ",prev->pid,next->pid);  
            /* switch to next process */
            asm volatile(    
                "pushq %%rbp
    	"         /* save rbp of prev */
                "movq %%rsp,%0
    	"     /* save rsp of prev */
                "movq %2,%%rsp
    	"     /* restore  rsp of next */
                "movq $1f,%1
    	"       /* save rip of prev */    
                "pushq %3
    	" 
                "ret
    	"                 /* restore  rip of next */
                "1:	"                  /* next process start here */
                "popq %%rbp
    	"
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            ); 
        }  
        return;    
    

      然后修改mymain.c文件:

    #include <linux/types.h>
    #include <linux/string.h>
    #include <linux/ctype.h>
    #include <linux/tty.h>
    #include <linux/vmalloc.h>
    
    
    #include "mypcb.h"
    
    tPCB task[MAX_TASK_NUM];
    tPCB * my_current_task = NULL;
    volatile int my_need_sched = 0;
    
    void my_process(void);
    
    
    void __init my_start_kernel(void)
    {
        int pid = 0;
        int i;
        /* Initialize process 0*/
        task[pid].pid = pid;
        task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
        task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;
        task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
        task[pid].next = &task[pid];
        /*fork more process */
        for(i=1;i<MAX_TASK_NUM;i++)
        {
            memcpy(&task[i],&task[0],sizeof(tPCB));
            task[i].pid = i;
            task[i].thread.sp = (unsigned long)(&task[i].stack[KERNEL_STACK_SIZE-1]);
            task[i].next = task[i-1].next;
            task[i-1].next = &task[i];
        }
        /* start process 0 by task[0] */
        pid = 0;
        my_current_task = &task[pid];
        asm volatile(
            "movq %1,%%rsp
    	"     /* set task[pid].thread.sp to rsp */
            "pushq %1
    	"             /* push rbp */
            "pushq %0
    	"             /* push task[pid].thread.ip */
            "ret
    	"                 /* pop task[pid].thread.ip to rip */
            : 
            : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    /* input c or d mean %ecx/%edx*/
        );
    } 
    
    int i = 0;
    
    void my_process(void)
    {    
        while(1)
        {
            i++;
            if(i%10000000 == 0)
            {
                printk(KERN_NOTICE "this is process %d -
    ",my_current_task->pid);
                if(my_need_sched == 1)
                {
                    my_need_sched = 0;
                    my_schedule();
                }
                printk(KERN_NOTICE "this is process %d +
    ",my_current_task->pid);
            }     
        }
    }
    

      重新进行编译,并运行,如下:

    make -j$(nproc)
    qemu-system-x86_64 -kernel arch/x86/boot/bzImage
    

      

     

    3. 简要分析操作系统内核核心功能及运行工作机制

    asm volatile(
            "movq %1,%%rsp
    	"     
            "pushq %1
    	"             
            "pushq %0
    	"           
            "ret
    	"                 
            : 
            : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)    
        );
    

      

    RSP寄存器指向原堆栈的栈顶,%1指后面的task[pid].thread.sp

    压栈当前进程RBP寄存器

    压栈当前进程RIP寄存器,%0指task[pid]. thread.ip

    ret命令正好可以让压栈的进程RIP保存到RIP寄存器中

    asm volatile(    
                "pushq %%rbp
    	"         
                "movq %%rsp,%0
    	"     
                "movq %2,%%rsp
    	"     
                "movq $1f,%1
    	"     
                "pushq %3
    	" 
                "ret
    	"               
                "1:	"            
                "popq %%rbp
    	"
                : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
                : "m" (next->thread.sp),"m" (next->thread.ip)
            );
    

      

    pushq %%rbp     保存prev进程(进程0)当前RBP寄存器的值到堆栈

    movq %%rsp,%0   保存prev进程(进程0)当前RSP寄存器的值到prev->thread.sp(%0)

    movq %2,%%rsp     将next进程的栈顶地址next->thread.sp放⼊RSP寄存器,完成了进程0和进程1的堆栈切换

    movq $1f,%1     保存prev进程当前RIP寄存器值到prev->thread.ip(%1),这⾥$1f是指标号1

    pushq %3      把即将执⾏的next进程的指令地址next->thread.ip(%3)⼊栈

    ret    将压⼊栈中的next->thread.ip放⼊RIP寄存器,程序jianjie直接使用RIP寄存器,通过ret间接改变

    popq %%rbp     将next进程堆栈基地址从堆栈中恢复到RBP寄存器中

  • 相关阅读:
    表相关操作
    表的约束
    windows平台MySQL安装
    网络编程2
    Python元类
    并发编程这个只是占位使用而已
    并发编程2
    并发编程1
    Mac装机神器Homebrew
    基于Django框架开发BBS项目
  • 原文地址:https://www.cnblogs.com/smjsoftware/p/12885084.html
Copyright © 2011-2022 走看看