zoukankan      html  css  js  c++  java
  • 马尔可夫决策过程MDP

     

    1. 马尔可夫模型的几类子模型

      马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM)。它们具有的一个共同性质就是马尔可夫性(无后效性),也就是指系统的下个状态只与当前状态信息有关,而与更早之前的状态无关。

      马尔可夫决策过程(Markov Decision Process, MDP)也具有马尔可夫性,与上面不同的是MDP考虑了动作,即系统下个状态不仅和当前的状态有关,也和当前采取的动作有关。还是举下棋的例子,当我们在某个局面(状态s)走了一步(动作a),这时对手的选择(导致下个状态s’)我们是不能确定的,但是他的选择只和s和a有关,而不用考虑更早之前的状态和动作,即s’是根据s和a随机生成的。

      我们用一个二维表格表示一下,各种马尔可夫子模型的关系就很清楚了:

      不考虑动作 考虑动作
    状态完全可见 马尔科夫链(MC) 马尔可夫决策过程(MDP)
    状态不完全可见 隐马尔可夫模型(HMM) 不完全可观察马尔可夫决策过程(POMDP)

    2. 马尔可夫决策过程

    一个马尔可夫决策过程由一个四元组构成M = (S, A, Psa, R ) [注1]

    • S: 表示状态集(states),有s∈S,si表示第i步的状态。
    • A:表示一组动作(actions),有a∈A,ai表示第i步的动作。
    • Psa: 表示状态转移概率。Psa 表示的是在当前s ∈ S状态下,经过a ∈ A作用后,会转移到的其他状态的概率分布情况。比如,在状态s下执行动作a,转移到s'的概率可以表示为p(s'|s,a),也可以说s‘的分布服从Psa
    • R: S×A€ℝ ,R是回报函数(reward function)。有些回报函数状态S的函数,可以简化为R: S € ℝ。如果一组(s,a)转移到了下个状态s',那么回报函数可记为r(s'|s, a)。如果(s,a)对应的下个状态s'是唯一的,那么回报函数也可以记为r(s,a)。(这里分为确定性和不确定。确定性的回报,即当在s下执行a时,下个状态s’是确定的;而不确定性的回报是指当在s下执行a时,下个状态s’是不确定的,即带概率的,这时我们需要用确定的期望值来代替不确定,即 E(r(s'|s, a)) = Σs1[p(s1|s,a) * r(s1|s,a)] )

      MDP 的动态过程如下:某个agent(智能体,也翻译成代理、学习者)的初始状态为s0,然后从 A 中挑选一个动作a0执行,执行后,agent 按Psa概率随机转移到了下一个s1状态,s1∈ Ps0a0。然后再执行一个动作a1,就转移到了s2,接下来再执行a2…,我们可以用下面的图表示状态转移的过程。

    如果回报r是根据状态s和动作a得到的,则MDP还可以表示成下图:

  • 相关阅读:
    js小案例---1.随机10不重复10数并排序2.一次输入10数并输出和
    23种设计模式-----转载
    类与类之间的关系-----转载
    设计模式六大原则-----转载
    配置JDK时环境变量path和JAVA_HOME的作用是什么?
    安装和配置JDK,并给出安装、配置JDK的步骤。
    1.Java为什么能跨平台运行?请简述原理。
    求圆的周长和面积
    java第一节课
    相关元素操作
  • 原文地址:https://www.cnblogs.com/smuxiaolei/p/7533239.html
Copyright © 2011-2022 走看看