zoukankan      html  css  js  c++  java
  • softmax

    关于多分类

    我们常见的逻辑回归、SVM等常用于解决二分类问题,对于多分类问题,比如识别手写数字,它就需要10个分类,同样也可以用逻辑回归或SVM,只是需要多个二分类来组成多分类,但这里讨论另外一种方式来解决多分类——softmax。

    关于softmax

    softmax的函数为

    P(i)=exp(θTix)Kk=1exp(θTkx)P(i)=exp(θiTx)∑k=1Kexp(θkTx)

    可以看到它有多个值,所有值加起来刚好等于1,每个输出都映射到了0到1区间,可以看成是概率问题。

    θTixθiTx为多个输入,训练其实就是为了逼近最佳的θTθT。

    如何多分类

    从下图看,神经网络中包含了输入层,然后通过两个特征层处理,最后通过softmax分析器就能得到不同条件下的概率,这里需要分成三个类别,最终会得到y=0、y=1、y=2的概率值。

    这里写图片描述

    继续看下面的图,三个输入通过softmax后得到一个数组[0.05 , 0.10 , 0.85],这就是soft的功能。

    这里写图片描述

    计算过程直接看下图,其中zLiziL即为θTixθiTx,三个输入的值分别为3、1、-3,ezez的值为20、2.7、0.05,再分别除以累加和得到最终的概率值,0.88、0.12、0。

    这里写图片描述

    代价函数

    对于训练集{(x(1),y(1)),...,(x(m),y(m))}{(x(1),y(1)),...,(x(m),y(m))},有y(i){1,2,3...,k}y(i)∈{1,2,3...,k},总共有k个分类。对于每个输入x都会有对应每个类的概率,即p(y=j|x)p(y=j|x),从向量角度来看,有,

    hθ(x(i))=⎡⎣⎢⎢⎢⎢⎢p(y(i)=1|x(i);θ)p(y(i)=2|x(i);θ)p(y(i)=k|x(i);θ)⎤⎦⎥⎥⎥⎥⎥=1kj=1eθTjx(i)⎡⎣⎢⎢⎢⎢⎢eθT1x(i)eθT2x(i)eθTkx(i)⎤⎦⎥⎥⎥⎥⎥hθ(x(i))=[p(y(i)=1|x(i);θ)p(y(i)=2|x(i);θ)⋮p(y(i)=k|x(i);θ)]=1∑j=1keθjT⋅x(i)[eθ1T⋅x(i)eθ2T⋅x(i)⋮eθkT⋅x(i)]

    softmax的代价函数定为如下,其中包含了示性函数1{j=y(i)}1{j=y(i)},表示如果第i个样本的类别为j则yij=1yij=1。代价函数可看成是最大化似然函数,也即是最小化负对数似然函数。

    J(θ)=1m[mi=1kj=11{y(i)=j}log(p(y(i)=j|x(i);θ))]J(θ)=−1m[∑i=1m∑j=1k1{y(i)=j}⋅log(p(y(i)=j|x(i);θ))]

    其中,p(y(i)=j|x(i);θ)=exp(θTix)Kk=1exp(θTkx)p(y(i)=j|x(i);θ)=exp(θiTx)∑k=1Kexp(θkTx)则,

    J(θ)=1m[mi=1kj=11{y(i)=j}(θTjx(i)log(kl=1eθTlx(i)))]J(θ)=−1m[∑i=1m∑j=1k1{y(i)=j}⋅(θjTx(i)−log(∑l=1keθlT⋅x(i)))]

    一般使用梯度下降优化算法来最小化代价函数,而其中会涉及到偏导数,即θj:=θjαδθjJ(θ)θj:=θj−αδθjJ(θ),则J(θ)J(θ)对θjθj求偏导,得到,

    J(θ)θj=1mmi=1[kj=11{y(i)=j}θTjx(i)θjkj=11{y(i)=j}log(kl=1eθTlx(i)))θj]∇J(θ)∇θj=−1m∑i=1m[∇∑j=1k1{y(i)=j}θjTx(i)∇θj−∇∑j=1k1{y(i)=j}log(∑l=1keθlT⋅x(i)))∇θj]

    =1mmi=1[1{y(i)=j}x(i)kj=11{y(i)=j}kl=1eθTlx(i)kl=1eθTlx(i)θj]=−1m∑i=1m[1{y(i)=j}x(i)−∇∑j=1k1{y(i)=j}∑l=1keθlT⋅x(i)∑l=1keθlT⋅x(i)∇θj]

    =1mmi=1[1{y(i)=j}x(i)x(i)eθTjx(i)kl=1eθTlx(i)]=−1m∑i=1m[1{y(i)=j}x(i)−x(i)eθjT⋅x(i)∑l=1keθlT⋅x(i)]

    =1mmi=1x(i)[1{y(i)=j}p(y(i)=j|x(i);θ)]=−1m∑i=1mx(i)[1{y(i)=j}−p(y(i)=j|x(i);θ)]

    得到代价函数对参数权重的梯度就可以优化了。

    使用场景

    在多分类场景中可以用softmax也可以用多个二分类器组合成多分类,比如多个逻辑分类器或SVM分类器等等。该使用softmax还是组合分类器,主要看分类的类别是否互斥,如果互斥则用softmax,如果不是互斥的则使用组合分类器。

  • 相关阅读:
    lintcode69- Binary Tree Level Order Traversal- easy
    lintcode378- Convert Binary Search Tree to Doubly Linked Lis- medium
    lintcode448- Inorder Successor in Binary Search Tree- medium
    lintcode94- Binary Tree Maximum Path Sum- medium
    lintcode475- Binary Tree Maximum Path Sum II- medium
    *lintcode246- Binary Tree Path Sum II- easy
    lintcode376- Binary Tree Path Sum- easy
    lintcode619- Binary Tree Longest Consecutive Sequence III- medium
    lintcode614- Binary Tree Longest Consecutive Sequence II- medium
    gstreamer在Ubuntu下构建开发环境 分类: ffmpeg-SDL-VLC-Live555 2015-04-07 17:56 324人阅读 评论(0) 收藏
  • 原文地址:https://www.cnblogs.com/smuxiaolei/p/8636546.html
Copyright © 2011-2022 走看看