我是真的弱,看题解都写了半天,,,
这题答案应该是(sum_{i=1}^{a}inom{a}{i}sum_{j=0}^{min(b,i-1)}inom{b}{j})
上面那个式子无法化简qwq
把A和b的抛硬币情况连在一起,记成一个01串,那么如果某个串代表B获胜,那么这个串的反串就能代表A获胜
如果(a=b),那么答案还要减去平局情况,即$$frac{2^{a+b}-inom{a+b}{a}}{2}$$
如果(a>b),那么有种特殊情况是代表A获胜的某个串反串还是代表A获胜,这种情况假设B硬币朝上个数为(i),A的朝上个数比B多(i),那么有(b-i<a-i-j),情况数量有$$sum_{i=0}{b}sum_{j=1}{a-b-1}inom{a}{i+j}inom{b}{i}$$个,也就是$$sum_{i=0}{b}sum_{j=1}{a-b-1}inom{a}{i+j}inom{b}{b-i}$$然后有个什么范德蒙德卷积
,就是(sum_{i+j=k}inom{a}{i}inom{b}{j}=inom{a+b}{k}),所以上式化简为$$sum_{i=1}^{a-b-1}inom{a+b}{b+i}$$
答案即$$frac{2{a+b}+sum_{i=1}{a-b-1}inom{a+b}{b+i}}{2}$$
然后因为模数不为质数,所以组合数要用(exlucas)求
注意在实现的时候要优化时间复杂度,例如预处理模2和模5的阶乘等
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
using namespace std;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
LL a,b,k,K,k2,k5;
LL fc[2][2000000];
int pm[30][2],tt;
il LL fpow(LL a,LL b,LL mod)
{
LL an=1;
while(b){if(b&1) an=an*a%mod;a=a*a%mod,b>>=1;}
return an;
}
il void exgcd(LL a,LL b,LL &x,LL &y)
{
if(!b) {x=1,y=0;return;}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
il LL ginv(LL a,LL b)
{
LL x,y;
exgcd(a,b,x,y);
return (x%b+b)%b;
}
il LL fac(LL n,LL p1,LL pk)
{
if(n<=1) return 1;
LL an=fpow(fc[p1&1][pk],n/pk,pk)*fc[p1&1][n%pk]%pk;
return an*fac(n/p1,p1,pk)%pk;
}
il LL C(LL n,LL m,LL p1,LL pk,bool d2)
{
LL kk=0;
for(LL i=n;i;i/=p1) kk+=i/p1;
for(LL i=m;i;i/=p1) kk-=i/p1;
for(LL i=n-m;i;i/=p1) kk-=i/p1;
if(kk-1>=k) return 0; //kk-1>=k,所以a*p^kk=0(mod p^k)
if(d2)
{
if(p1&1) kk=fpow(p1,kk,pk)*ginv(2,pk)%pk;
else kk=fpow(p1,kk-1,pk);
}
else kk=fpow(p1,kk,pk);
return fac(n,p1,pk)*ginv(fac(m,p1,pk),pk)%pk*ginv(fac(n-m,p1,pk),pk)%pk*kk%pk;
}
il LL exlcs(LL n,LL m,bool d2)
{
return (C(n,m,2,k2,d2)*k5%K*ginv(k5,k2)%K+C(n,m,5,k5,d2)*k2%K*ginv(k2,k5)%K)%K;
}
il void init(int a,int b)
{
int px=a&1;
fc[px][0]=1;
for(int i=1;i<=b;++i)
{
fc[px][i]=fc[px][i-1];
if(i%a) fc[px][i]=fc[px][i]*i%b;
}
} //预处理fac函数中的计算部分
il void print(int x,int kk)
{
kk/=10;
while(kk) putchar(x/kk%10+'0'),kk/=10;
putchar('
');
}
int main()
{
init(2,512),init(5,1953125);
while(scanf("%lld%lld%lld",&a,&b,&k)!=-1)
{
K=k2=k5=1;
int kb=k;while(kb--) K*=10,k2*=2,k5*=5;
if(a==b) print((fpow(2,a+b-1,K)-exlcs(a+b,a,1)+K)%K,K);
else
{
LL an=fpow(2,a+b-1,K);
for(LL i=b+1;i<=(a+b)/2;++i)
an=(an+exlcs(a+b,i,0)%K)%K; //根据C(a,b)=C(a,a-b)省去一半计算
if(!((a+b)&1)) an=(an-exlcs(a+b,(a+b)/2,1)+K)%K;
print(an,K);
}
}
return 0;
}