(HNOI2019)前最后一题了qwq
这题要分情况,如果(p=2)或(5),那么只要区间内最后一个数字是(p)的倍数就好了,这个可以莫队,也有更优秀的做法.莫队做法可以看代码懒
否则,考虑一个数怎么表示,记(s_i)为前(i)为构成的数,可以知道区间([i,j])的数应该是(s_r-s_{l-1}*10^{r-l+1}),现在要求这个数模(p)为0,那么也就是$$s_r-s_{l-1}*10^{r-l+1}equiv0 (mathrm{mod} p)$$
两边同时除掉(10^r),得到
[s_r*10^{-r}-s_{l-1}*10^{-(l-1)}equiv0 (mathrm{mod} p)
]
如果位置(i)的权值为(s_i*10^{-i}),那么一个区间([i,j])的答案就是([i-1,j])中每种权值相同的点对个数,这个还是比较好写的
#include<bits/stdc++.h>
#define LL long long
#define db long double
#define il inline
using namespace std;
const int N=1e5+10;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int p,a[N],n,sqt,q,be[N];
LL an[N],na;
char cc[N];
struct qu
{
int l,r,i;
bool operator < (const qu &bb) const {return be[l]!=be[bb.l]?l<bb.l:r<bb.r;}
}qq[N];
int fpow(int a,int b){a%=p;int an=1;while(b){if(b&1) an=1ll*an*a%p;a=1ll*a*a%p,b>>=1;} return an;}
namespace ct1
{
int cn;
void wk()
{
sort(qq+1,qq+q+1);
for(int i=1,l=1,r=0;i<=q;++i)
{
while(r<qq[i].r) ++r,cn+=a[r]%p==0,na+=(a[r]%p==0?r-l+1:0);
while(r>qq[i].r) na-=(a[r]%p==0?r-l+1:0),cn-=a[r]%p==0,--r;
while(l<qq[i].l) na-=cn,cn-=a[l]%p==0,++l;
while(l>qq[i].l) --l,cn+=a[l]%p==0,na+=cn;
an[qq[i].i]=na;
}
}
}
namespace ct2
{
int cn[N],b[N],m;
void wk()
{
int pp=fpow(10,p-2);
b[++m]=0;
for(int i=1,j=1,sm=0;i<=n;++i)
{
sm=1ll*sm*10%p+a[i],j=1ll*j*pp%p;
a[i]=1ll*sm*j%p;
b[++m]=a[i];
}
sort(b+1,b+m+1),m=unique(b+1,b+m+1)-b-1;
for(int i=0;i<=n;++i) a[i]=lower_bound(b+1,b+m+1,a[i])-b;
for(int i=1;i<=q;++i) --qq[i].l;
sort(qq+1,qq+q+1);
for(int i=1,l=0,r=-1;i<=q;++i)
{
while(r<qq[i].r) ++r,++cn[a[r]],na+=cn[a[r]]-1;
while(r>qq[i].r) na-=cn[a[r]]-1,--cn[a[r]],--r;
while(l<qq[i].l) na-=cn[a[l]]-1,--cn[a[l]],++l;
while(l>qq[i].l) --l,++cn[a[l]],na+=cn[a[l]]-1;
an[qq[i].i]=na;
}
}
}
int main()
{
p=rd();
scanf("%s",cc+1);
n=strlen(cc+1);
sqt=sqrt(n);
for(int i=1;i<=n;++i) a[i]=cc[i]-'0',be[i]=i/sqt;
q=rd();
for(int i=1;i<=q;++i) qq[i].l=rd(),qq[i].r=rd(),qq[i].i=i;
if(p==2||p==5) ct1::wk();
else ct2::wk();
for(int i=1;i<=q;++i) printf("%lld
",an[i]);
return 0;
}