首先可以考虑给一个人(A)染色.其他人被染色,要么被本来在后面的速度更快的人染色,要么被在前面的更慢的人染色.然后假设一个速度比最开始那个人慢的人(B)最后被染色了,那么最后速度在这两人之间的人都会染色,因为如果这中间的人(C)没有直接被最开始那个人染,又因为那个慢的人(B)被染色,说明一开始相对位置关系是(CAB),因为(B)比(C)慢,又在(C)后面,那么(B)被染色后一定会和(C)相遇,给(C)染色;对于更快的人如果被染色了,那么比他慢比(A)快的也会被染色,证明同理.
所以这样看来每个人能染色的人在最后的时刻一定是一段连续区间,具体的说,左端点为速度最慢的并且一开始在(A)后面的人,右端点为最快的并且一开始在(A)前面的人.然后现在问题变成有(n)个区间,问多少种选区间的方案能完全覆盖([1,n]).数据结构优化dp即可
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<vector>
#include<cmath>
#include<ctime>
#include<queue>
#include<map>
#include<set>
#define LL long long
#define db double
using namespace std;
const int N=2e5+10,mod=1e9+7;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+(ch^48);ch=getchar();}
return x*w;
}
struct node
{
int x,y;
bool operator < (const node &bb) const {return y!=bb.y?y<bb.y:x<bb.x;}
}b[N],a[N];
int n,mx[N][20],mi[N][20],l2[N],sm=1;
int gmx(int l,int r)
{
int z=l2[r-l+1];
return max(mx[l][z],mx[r-(1<<z)+1][z]);
}
int gmi(int l,int r)
{
int z=l2[r-l+1];
return min(mi[l][z],mi[r-(1<<z)+1][z]);
}
int c[N];
void ad(int x,int y){while(x<=n) c[x]=(c[x]+y)%mod,x+=x&(-x);}
int gsm(int x){int an=x>=0;while(x>0) an=(an+c[x])%mod,x-=x&(-x);return an;}
int main()
{
n=rd();
for(int i=1;i<=n;++i) b[i].x=rd(),b[i].y=rd();
sort(b+1,b+n+1);
for(int i=1;i<=n;++i) mx[i][0]=mi[i][0]=b[i].x;
for(int i=2;i<=n;++i) l2[i]=l2[i>>1]+1;
for(int j=1;j<=l2[n];++j)
for(int i=1;i+(1<<j)-1<=n;++i)
{
mx[i][j]=max(mx[i][j-1],mx[i+(1<<(j-1))][j-1]);
mi[i][j]=min(mi[i][j-1],mi[i+(1<<(j-1))][j-1]);
}
for(int i=1;i<=n;++i)
{
a[i].x=a[i].y=i;
int l=1,r=i-1;
while(l<=r)
{
int mid=(l+r)>>1;
if(gmx(1,mid)>b[i].x) a[i].x=mid,r=mid-1;
else l=mid+1;
}
l=i+1,r=n;
while(l<=r)
{
int mid=(l+r)>>1;
if(gmi(mid,r)<b[i].x) a[i].y=mid,l=mid+1;
else r=mid-1;
}
}
sort(a+1,a+n+1);
for(int i=1;i<=n;++i)
{
int ll=a[i].x,rr=a[i].y;
int nf=(sm-gsm(ll-2)+mod)%mod;
sm=(sm+nf)%mod;
ad(rr,nf);
}
printf("%d
",(sm-gsm(n-1)+mod)%mod);
return 0;
}