zoukankan      html  css  js  c++  java
  • loj 2392「JOISC 2017 Day 1」烟花棒

    loj

    答案显然满足二分性,先二分一个速度(v)

    然后显然所有没有点火的都会往中间点火的人方向走,并且如果两个人相遇不会马上点火,要等到火快熄灭的时候才点火,所以这两个人之后应该在一起行动.另外有火的人应该是选前面一个或后面一个没火的人,去和他相遇,所有任意时刻点过火的人都是连续的区间([L,R](Lle k le R))

    现在要做的是推出([1,n])是否可以被全部点火.一个区间([L,R])能被点火,至少要满足的条件为(x_R-x_Lle 2tv(R-L)),即这两个人至少要在(t(R-L))时间内相遇.对于一个合法的点火方案,过程中每个区间都满足这个条件,然后考虑证明前驱区间都满足条件的区间一定合法.首先第一个区间([k,k])一定合法;然后在上一个区间合法的情况下,因为两个区间都满足条件,即(x_R-x_Lle 2tv(R-L)),那么最右边那个点都能碰到左边那个点,并且如果只有([L,R])之间的点,所有点走不会走出([x_L,x_R]),那么其他的点更能碰到新加进来的点了

    所以问题变成要把([k,k])拓展成([1,n]),每次可以给左右端点移动一格,要使得始终满足(x_R-x_Lle 2tv(R-L)),问有没有合法方案.首先把这个柿子化一下,得到(x_L-2tvLge x_R-2tvR),然后记(b_i=x_i-2tvi),那么就是要始终使得(a_Lge a_R).然后每次一直移动左/右端点直到无法移动,为了更优的移动,每次移动左端点时移动到(L'),并满足(b_{L'}ge b_L)以及(min_{i=L'}^{L} b_i ge b_R),这样子移动显然可以给右端点创造出更好的移动条件.右端点的移动也是类似的

    如果最后(L,R)有一个没移动到最值点,并且不能再移动了,那么就无解.否则,移动到最值点,如果左边右边还有一段路程,那么这时直接移动显然可能会导致无解.现在考虑把左右端点设为(1)(n),然后分别移动到(L)(R),这个过程可以套用前面的做法.因为这个移动过程可逆,并且倒着移动过程也是和正着移动过程有相同性质,所以是合法的

    #include<bits/stdc++.h>
    #define LL long long
    #define uLL unsigned long long
    #define db long double
    
    using namespace std;
    const int N=1e5+10;
    const db eps=1e-4;
    int rd()
    {
    	int x=0,w=1;char ch=0;
    	while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
    	while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
    	return x*w;
    };
    int n,kk,t,ft[N],nt[N];
    db a[N],b[N],bb[N],mid,mi[N],mx[N];
    int s1[N],t1,s2[N],t2;
    bool ck(int n,db kk,bool oo)
    {
    	t1=t2=0;
    	for(int i=1;i<=kk;++i)
    	{
    		db nw=b[i];
    		while(t1&&b[s1[t1]]<b[i]) nw=min(nw,mi[t1]),--t1;
    		s1[++t1]=i,mi[t1]=nw;
    	}
    	for(int i=n;i>=kk;--i)
    	{
    		db nw=b[i];
    		while(t2&&b[s2[t2]]>b[i]) nw=max(nw,mx[t2]),--t2;
    		s2[++t2]=i,mx[t2]=nw;
    	}
    	int ll=kk,rr=kk+oo;
    	while(t1>1||t2>1)
    	{
    		bool fg=0;
    		while(t1>1&&mi[t1]>=b[rr]) fg=1,--t1,ll=s1[t1];
    		while(t2>1&&b[ll]>=mx[t2]) fg=1,--t2,rr=s2[t2];
    		if(!fg) break;
    	}
    	if(t1>1||t2>1) return 0;
    	if(ll==1&&rr==n) return 1;
    	if(oo) return 0;
    	int tp=0;
    	for(int i=ll;i;--i) bb[++tp]=b[i];
    	for(int i=n;i>=rr;--i) bb[++tp]=b[i];
    	memcpy(b,bb,sizeof(db)*(tp+1));
    	return ck(tp,ll,1);
    }
    
    int main()
    {
    	n=rd(),kk=rd(),t=rd();
    	for(int i=1;i<=n;++i) a[i]=rd();
    	db l=0,r=1e9,ans=1e9;
    	while(r-l>eps)
    	{
    		mid=(l+r)/2;
    		for(int i=1;i<=n;++i) b[i]=a[i]-2*mid*t*i;
    		if(ck(n,kk,0)) ans=mid,r=mid-eps;
    		else l=mid+eps;
    	}
    	printf("%d
    ",(int)ceil(ans-eps*2));
    	return 0; 
    }
    
  • 相关阅读:
    关于MTK平台CC相关的Log查询
    es5 对象方法
    es5 数组查询案例
    继承 和 es5 新增方法 数组方法
    扩展内置对象
    Js 面向对象 动态添加标签页
    记住用户名 缓存案例 localstorage
    解析好的静态页面.shtml浏览器无法解析.需要apache解析后再返回给浏览器
    开始工作----微信通过get检查当前网站---是否可用
    view视图--display中echo出ob_get_contents的缓冲内容--(实现,拼接好文件--导入文件)
  • 原文地址:https://www.cnblogs.com/smyjr/p/11558416.html
Copyright © 2011-2022 走看看