zoukankan      html  css  js  c++  java
  • [置顶] 简单解析linux下进程通信方法

    linux下的进程通信手段基本上是从Unix平台上的进程通信手段继承而来的。而对Unix发展做出重大贡献的两大主力AT&T的贝尔实验室及BSD(加州大学伯克利分校的伯克利软件发布中心)在进程间通信方面的侧重点有所不同。前者对Unix早期的进程间通信手段进行了系统的改进和扩充,形成了“system V IPC”,通信进程局限在单个计算机内;后者则跳过了该限制,形成了基于套接口(socket)的进程间通信机制。Linux则把两者继承了下来,如图示:如图示:

     其中,最初Unix IPC包括:管道、FIFO、信号;System V IPC包括:System V消息队列、System V信号灯、System V共享内存区;Posix IPC包括: Posix消息队列、Posix信号灯、Posix共享内存区。有两点需要简单说明一下:1)由于Unix版本的多样性,电子电气工程协会(IEEE)开发了一个独立的Unix标准,这个新的ANSI Unix标准被称为计算机环境的可移植性操作系统界面(PSOIX)。现有大部分Unix和流行版本都是遵循POSIX标准的,而Linux从一开始就遵循POSIX标准;2)BSD并不是没有涉足单机内的进程间通信(socket本身就可以用于单机内的进程间通信)。事实上,很多Unix版本的单机IPC留有BSD的痕迹,如4.4BSD支持的匿名内存映射、4.3+BSD对可靠信号语义的实现等等。

    图一给出了linux 所支持的各种IPC手段,在本文接下来的讨论中,为了避免概念上的混淆,在尽可能少提及Unix的各个版本的情况下,所有问题的讨论最终都会归结到Linux环境下的进程间通信上来。并且,对于Linux所支持通信手段的不同实现版本(如对于共享内存来说,有Posix共享内存区以及System V共享内存区两个实现版本),将主要介绍Posix API。

    linux下进程间通信的几种主要手段简介:

    1. 管道(Pipe)及有名管道(named pipe):管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信;
    2. 信号(Signal):信号是比较复杂的通信方式,用于通知接受进程有某种事件发生,除了用于进程间通信外,进程还可以发送信号给进程本身;linux除了支持Unix早期信号语义函数sigal外,还支持语义符合Posix.1标准的信号函数sigaction(实际上,该函数是基于BSD的,BSD为了实现可靠信号机制,又能够统一对外接口,用sigaction函数重新实现了signal函数);
    3. 报文(Message)队列(消息队列):消息队列是消息的链接表,包括Posix消息队列system V消息队列。有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺点。
    4. 共享内存:使得多个进程可以访问同一块内存空间,是最快的可用IPC形式。是针对其他通信机制运行效率较低而设计的。往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥。
    5. 信号量(semaphore):主要作为进程间以及同一进程不同线程之间的同步手段。
    6. 套接口(Socket):更为一般的进程间通信机制,可用于不同机器之间的进程间通信。起初是由Unix系统的BSD分支开发出来的,但现在一般可以移植到其它类Unix系统上:Linux和System V的变种都支持套接字。

    ----.管道

    管道是进程间通信中最古老的方式,它包括无名管道和有名管道两种,前者可用于具有亲缘关系进程间的通信,即可用于父进程和子进程间的通信,后者额克服了管道没有名字的限制,因此,除具有前者所具有的功能外,它还允许无亲缘关系进程间的通信,即可用于运行于同一台机器上的任意两个进程间的通信。
    无名管道由pipe()函数创建:

    #include <unistd.h>
             int pipe(int filedis[2]);

    参数filedis返回两个文件描述符:filedes[0]为读而打开,filedes[1]为写而打开。filedes[1]的输出是filedes[0]的输入。

    在Linux系统下,有名管道可由两种方式创建:命令行方式mknod系统调用和函数mkfifo。下面的两种途径都在当前目录下生成了一个名为myfifo的有名管道:

    方式一:mkfifo("myfifo","rw");

    方式二:mknod myfifo p

    生成了有名管道后,就可以使用一般的文件I/O函数如open、close、read、write等来对它进行操作。

    ----消息队列

    消息队列是消息的链接表,包括Posix消息队列system V消息队列。消息队列用于运行于同一台机器上的进程间通信,它和管道很相似,有足够权限的进程可以向队列中添加消息,被赋予读权限的进程则可以读走队列中的消息。消息队列克服了信号承载信息量少,管道只能承载无格式字节流以及缓冲区大小受限等缺点。 我们可以用流管道或者套接口的方式来取代它。

    ----.共享内存

    共享内存是运行在同一台机器上的进程间通信最快的方式,因为数据不需要在不同的进程间复制。通常由一个进程创建一块共享内存区,其余进程对这块内存区进行读写。共享内存往往与其它通信机制,如信号量结合使用,来达到进程间的同步及互斥。
    首先要用的函数是shmget,它获得一个共享存储标识符。

    主要操作函数:
      创建信号量
    int semget(
    key_t key,  //标识信号量的关键字,有三种方法:1、使用IPC——PRIVATE让系统产生, 2、挑选一个随机数,3、使用ftok从文件路径名中产生
    int nSemes,  //信号量集中元素个数
    int flag  //IPC_CREAT,IPC_EXCL 只有在信号量集不存在时创建
    )
    成功:返回信号量句柄
    失败:返回-1

    这个函数有点类似大家熟悉的malloc函数,系统按照请求分配size大小的内存用作共享内存。Linux系统内核中每个IPC结构都有的一个非负整数的标识符,这样对一个消息队列发送消息时只要引用标识符就可以了。这个标识符是内核由IPC结构的关键字得到的,这个关键字,就是上面第一个函数的key。数据类型key_t是在头文件sys/types.h中定义的,它是一个长整形的数据。在我们后面的章节中,还会碰到这个关键字。

    使用ftok函数根据文件路径名产生一个关键字
    key_t ftok(const char *pathname,int proj_id);
    路径名称必须有相应权限 
    控制信号量
    int semctl(
    int semid,  //信号量集的句柄

    int semnum,  //信号量集的元素数
    int cmd,  //命令    /*union senum arg */ )

    成功:返回相应的值
    失败:返回-1 
    命令详细说明:
    cmd:   IPC_RMID 删除一个信号量
    IPC_EXCL 只有在信号量集不存在时创建
    IPC_SET 设置信号量的许可权
    SETVAL 设置指定信号量的元素的值为 agc.val
    GETVAL 获得一个指定信号量的值
    GETPID 获得最后操纵此元素的最后进程ID
    GETNCNT 获得等待元素变为1的进程数
    GETZCNT 获得等待元素变为0的进程数  

    当共享内存创建后,其余进程可以调用shmat()将其连接到自身的地址空间中。

    void *shmat(int shmid, void *addr, int flag);

    shmid为shmget函数返回的共享存储标识符,addr和flag参数决定了以什么方式来确定连接的地址,函数的返回值即是该进程数据段所连接的实际地址,进程可以对此进程进行读写操作。

    使用共享存储来实现进程间通信的注意点是对数据存取的同步,必须确保当一个进程去读取数据时,它所想要的数据已经写好了。通常,信号量被要来实现对共享存储数据存取的同步,另外,可以通过使用shmctl函数设置共享存储内存的某些标志位如SHM_LOCK、SHM_UNLOCK等来实现。

    ----信号量

    信号量又称为信号灯,它是用来协调不同进程间的数据对象的,而最主要的应用是前一节的共享内存方式的进程间通信。本质上,信号量是一个计数器,它用来记录对某个资源(如共享内存)的存取状况。一般说来,为了获得共享资源,进程需要执行下列操作:

    (1) 测试控制该资源的信号量。

    (2) 若此信号量的值为正,则允许进行使用该资源。进程将进号量减1。

    (3) 若此信号量为0,则该资源目前不可用,进程进入睡眠状态,直至信号量值大于0,进程被唤醒,转入步骤(1)。

    (4) 当进程不再使用一个信号量控制的资源时,信号量值加1。如果此时有进程正在睡眠等待此信号量,则唤醒此进程。

    维护信号量状态的是Linux内核操作系统而不是用户进程。我们可以从头文件/usr/src/linux/include /linux /sem.h中看到内核用来维护信号量状态的各个结构的定义。信号量是一个数据集合,用户可以单独使用这一集合的每个元素。要调用的第一个函数是semget,用以获得一个信号量ID。
    int semget(key_t key, int nsems, int flag);

    key是前面讲过的IPC结构的关键字,它将来决定是创建新的信号量集合,还是引用一个现有的信号量集合。nsems是该集合中的信号量数。如果是创建新集合(一般在服务器中),则必须指定nsems;如果是引用一个现有的信号量集合(一般在客户机中)则将nsems指定为0。

    semctl函数用来对信号量进行操作。

    int semctl(int semid, int semnum, int cmd, union semun arg);

    不同的操作是通过cmd参数来实现的,在头文件sem.h中定义了7种不同的操作,实际编程时可以参照使用。

    semop函数自动执行信号量集合上的操作数组。

    int semop(int semid, struct sembuf semoparray[], size_t nops);

    semoparray是一个指针,它指向一个信号量操作数组。nops规定该数组中操作的数量。

    下面,我们看一个具体的例子,它创建一个特定的IPC结构的关键字和一个信号量,建立此信号量的索引,修改索引指向的信号量的值,最后我们清除信号量。

    ----.套接字

        套接字(socket)编程是实现Linux系统和其他大多数操作系统中进程间通信的主要方式之一。我们熟知的WWW服务、FTP服务、TELNET服务等都是基于套接口编程来实现的。除了在异地的计算机进程间以外,套接口同样适用于本地同一台计算机内部的进程间通信。

    一般来说,linux下的进程包含以下几个关键要素:

    • 有一段可执行程序;
    • 有专用的系统堆栈空间;
    • 内核中有它的控制块(进程控制块),描述进程所占用的资源,这样,进程才能接受内核的调度;
    • 具有独立的存储空间

    进程和线程有时候并不完全区分,而往往根据上下文理解其含义。

  • 相关阅读:
    SHELL基础
    阿里
    Ansible基础
    js实现的跳转页面方法实现汇总
    绕过js-sdk,微信转发的时候在标题添加时间和地点。
    wechat-js-sdk
    js调用百度地图api实现定位
    微创网站工作总结:用错地方的资源
    项目进行时—整理
    js实现双击改变文本内容
  • 原文地址:https://www.cnblogs.com/snake-hand/p/3148178.html
Copyright © 2011-2022 走看看