zoukankan      html  css  js  c++  java
  • Android中Linux suspend/resume流程

    Android中Linux suspend/resume流程

    首先我们从linux kernel 的suspend说起,不管你是使用echo mem > /sys/power/state 或者使用你的开发板已经拥有的power key 都可以实现系统进入suspend的功能,这是suspend的基础,即控制系统使suspend得到执行的机会,这里相信大家都可以理解,不再过多说明。

    那么suspend得到了执行的机会又是怎么一步一步开始往下执行的呢?现在就开始我们的系统的电源管理之旅:

    我们就通过echo mem > /sys/power/state这种方式来看,这样更容易被理解,位于/sys/power下面的这个state,做driver不知道那可说不过去,我们就看看这个state是在哪个地方创建的吧

    kernel/kernel/power/suspend.c

    static int __init pm_init(void)
    {
    	int error = pm_start_workqueue();
    	if (error)
    		return error;
    	hibernate_image_size_init();
    	hibernate_reserved_size_init();
    	power_kobj = kobject_create_and_add("power", NULL);
    	if (!power_kobj)
    		return -ENOMEM;
    	return sysfs_create_group(power_kobj, &attr_group);
    }
    
    core_initcall(pm_init);
    

    这段代码很少却很重要,我关心的是他确实为我们在sys目录下先建了一个power目录,然后,return时创建了很多接口,其中一个就是state,以下是接口定义

    static struct attribute * g[] = {
    	&state_attr.attr,
    #ifdef CONFIG_PM_TRACE
    	&pm_trace_attr.attr,
    	&pm_trace_dev_match_attr.attr,
    #endif
    #ifdef CONFIG_PM_SLEEP
    	&pm_async_attr.attr,
    	&wakeup_count_attr.attr,
    #ifdef CONFIG_PM_DEBUG
    	&pm_test_attr.attr,
    #endif
    #ifdef CONFIG_USER_WAKELOCK
    	&wake_lock_attr.attr,
    	&wake_unlock_attr.attr,
    #endif
    #endif
    	NULL,
    };
    
    static struct attribute_group attr_group = {
    	.attrs = g,
    };

    上面你可以看到了这些接口了

    我们在echo mem > /sys/power/state,或调用的我们的接口函数state_store,suspend也就才真正开始走出第一步

    static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr,
    			   const char *buf, size_t n)
    {
    #ifdef CONFIG_SUSPEND
    #ifdef CONFIG_EARLYSUSPEND
    	suspend_state_t state = PM_SUSPEND_ON;
    #else
    	suspend_state_t state = PM_SUSPEND_STANDBY;
    #endif
    	const char * const *s;
    #endif
    	char *p;
    	int len;
    	int error = -EINVAL;
    
    	p = memchr(buf, '
    ', n);
    	len = p ? p - buf : n;
    
    	/* First, check if we are requested to hibernate */
    	if (len == 4 && !strncmp(buf, "disk", len)) {
    		error = hibernate();
                    goto Exit;
    	}
    
    #ifdef CONFIG_SUSPEND
    	for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++) {
    		if (*s && len == strlen(*s) && !strncmp(buf, *s, len))
    			break;
    	}
    	if (state < PM_SUSPEND_MAX && *s)
    #ifdef CONFIG_EARLYSUSPEND
    		if (state == PM_SUSPEND_ON || valid_state(state)) {
    			error = 0;
    			request_suspend_state(state);
    		}
    #else
    		error = enter_state(state);
    #endif
    #endif
    
     Exit:
    	return error ? error : n;
    }

    这里我们echo mem > /sys/power/state, 还有一种echo on > /sys/power/state,接着state_store进入reauest_suspend_state(state),然后如果是on的话进入late_resume_work(在执行late_resume_work之前会向系统申请main_wake_lock),如果是mem进入early_suspend_work。

    reauest_suspend_state函数路径:kernel/kernel/power/earlysuspend.c

    void request_suspend_state(suspend_state_t new_state)
    {
    	unsigned long irqflags;
    	int old_sleep;
    
    	spin_lock_irqsave(&state_lock, irqflags);
    	old_sleep = state & SUSPEND_REQUESTED;
    	if (debug_mask & DEBUG_USER_STATE) {
    		struct timespec ts;
    		struct rtc_time tm;
    		getnstimeofday(&ts);
    		rtc_time_to_tm(ts.tv_sec, &tm);
    		pr_info("request_suspend_state: %s (%d->%d) at %lld "
    			"(%d-%02d-%02d %02d:%02d:%02d.%09lu UTC)
    ",
    			new_state != PM_SUSPEND_ON ? "sleep" : "wakeup",
    			requested_suspend_state, new_state,
    			ktime_to_ns(ktime_get()),
    			tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
    			tm.tm_hour, tm.tm_min, tm.tm_sec, ts.tv_nsec);
    	}
    	if (!old_sleep && new_state != PM_SUSPEND_ON) {
    		state |= SUSPEND_REQUESTED;
    		queue_work(suspend_work_queue, &early_suspend_work);
    	} else if (old_sleep && new_state == PM_SUSPEND_ON) {
    		state &= ~SUSPEND_REQUESTED;
    		wake_lock(&main_wake_lock);
    		queue_work(suspend_work_queue, &late_resume_work);
    	}
    	requested_suspend_state = new_state;
    	spin_unlock_irqrestore(&state_lock, irqflags);
    }
    

    这里做的最重要的是就在最下面那两个分支中,决定了我们执行early_suspend_work,还是late_resume_work。这里我们走early_suspend_work这个分支接着往下看。先看看early_suspend_work怎么被调用

    queue_work(suspend_work_queue, &early_suspend_work);

    这是一个工作队列的调用方法,找到early_suspend_work的定义

    static DECLARE_WORK(early_suspend_work, early_suspend);

    这里有关于工作队列的方法,不知道就要自己去看看了,所以这里最终调用的其实是early_suspend这个方法

    static void early_suspend(struct work_struct *work)
    {
    	struct early_suspend *pos;
    	unsigned long irqflags;
    	int abort = 0;
    
    	mutex_lock(&early_suspend_lock);
    	spin_lock_irqsave(&state_lock, irqflags);
    	if (state == SUSPEND_REQUESTED)
    		state |= SUSPENDED;
    	else
    		abort = 1;
    	spin_unlock_irqrestore(&state_lock, irqflags);
    
    	if (abort) {
    		if (debug_mask & DEBUG_SUSPEND)
    			pr_info("early_suspend: abort, state %d
    ", state);
    		mutex_unlock(&early_suspend_lock);
    		goto abort;
    	}
    
    	if (debug_mask & DEBUG_SUSPEND)
    		pr_info("early_suspend: call handlers
    ");
    	list_for_each_entry(pos, &early_suspend_handlers, link) {
    		if (pos->suspend != NULL) {
    			if (debug_mask & DEBUG_VERBOSE)
    				pr_info("early_suspend: calling %pf
    ", pos->suspend);
    			pos->suspend(pos);
    		}
    	}
    	mutex_unlock(&early_suspend_lock);
    
    	if (debug_mask & DEBUG_SUSPEND)
    		pr_info("early_suspend: sync
    ");
    
    	sys_sync();
    abort:
    	spin_lock_irqsave(&state_lock, irqflags);
    	if (state == SUSPEND_REQUESTED_AND_SUSPENDED)
    		wake_unlock(&main_wake_lock);
    	spin_unlock_irqrestore(&state_lock, irqflags);
    }
    

    early_suspend()这个函数里会遍历early_suspend_handlers,依次执行里面的early_suspend函数,执行完所有的early_suspend后,释放main_wake_lock,进入wake_unlock函数。

    wake_unlock(&main_wake_lock);

    这里还是说一下吧,这个main_wake_lock是个什么东西,路径:kernel/kernel/power/wakelock.c

    struct wake_lock main_wake_lock;

    看他的初始化

    wake_lock_init(&main_wake_lock, WAKE_LOCK_SUSPEND, "main");

    wake_lock(&main_wake_lock);

    首先初始化,然后lock,等待unlock

    对于一个lock进入wake_unlock,首先会将lock从原链表中删除(active_wake_locks),然后加入inactive_locks链表中。

    void wake_unlock(struct wake_lock *lock)
    {
    	int type;
    	unsigned long irqflags;
    	spin_lock_irqsave(&list_lock, irqflags);
    	type = lock->flags & WAKE_LOCK_TYPE_MASK;
    #ifdef CONFIG_WAKELOCK_STAT
    	wake_unlock_stat_locked(lock, 0);
    #endif
    	if (debug_mask & DEBUG_WAKE_LOCK)
    		pr_info("wake_unlock: %s
    ", lock->name);
    	lock->flags &= ~(WAKE_LOCK_ACTIVE | WAKE_LOCK_AUTO_EXPIRE);
    	list_del(&lock->link);
    	list_add(&lock->link, &inactive_locks);
    	if (type == WAKE_LOCK_SUSPEND) {
    		long has_lock = has_wake_lock_locked(type);
    		if (has_lock > 0) {
    			if (debug_mask & DEBUG_EXPIRE)
    				pr_info("wake_unlock: %s, start expire timer, "
    					"%ld
    ", lock->name, has_lock);
    			mod_timer(&expire_timer, jiffies + has_lock);
    		} else {
    			if (del_timer(&expire_timer))
    				if (debug_mask & DEBUG_EXPIRE)
    					pr_info("wake_unlock: %s, stop expire "
    						"timer
    ", lock->name);
    			if (has_lock == 0)
    				queue_work(suspend_work_queue, &suspend_work);
    		}
    		if (lock == &main_wake_lock) {
    			if (debug_mask & DEBUG_SUSPEND)
    				print_active_locks(WAKE_LOCK_SUSPEND);
    #ifdef CONFIG_WAKELOCK_STAT
    			update_sleep_wait_stats_locked(0);
    #endif
    		}
    	}
    	spin_unlock_irqrestore(&list_lock, irqflags);
    }

    对于释放锁,上面两个过程就结束了,但是如果这个锁的类型是WAKE_LOCK_SUSPEND,那么还需要执行一些操作,判断是否可以进入睡眠。首先调has_wake_lock_locked(type)去查找是否还有这种类型的锁,会遍历active_wake_locks[type]链表,如果在这个链表中一检测中有锁,而且该锁不是超时锁,那么就返回-1。如果是超时锁,且已经超时了,那就去释放这个锁,如果没超时就得到一个max_timeout,然后返回max_timeout。接着就会回到wake_unlock函数中,调用mod_timer(&expire_timer,jiffies +has_lock);has_lock就是前面返回的max_timeout,这句话的意思就是向系统中再添加定时器,定时时间就是最大的超时时间.expire_timer的操作函数是expire_wake_locks,这里会去检测还有没有锁,没有的话就进入suspend_work,执行suspend,进入睡眠流程。上面wake_unlock中如果没有检测到锁,也会执行suspend。在suspend函数中又会通过has_wake_lock去检测有没有锁,有锁就直接返回。

    queue_work(suspend_work_queue, &suspend_work);

    又是一个工作队列,看看他的定义,找到他的处理过程

    static DECLARE_WORK(suspend_work, suspend);

    所以他真正执行的是suspend这个方法

    static void suspend(struct work_struct *work)
    {
    	int ret;
    	int entry_event_num;
    	struct timespec ts_entry, ts_exit;
    
    	if (has_wake_lock(WAKE_LOCK_SUSPEND)) {
    		if (debug_mask & DEBUG_SUSPEND)
    			pr_info("suspend: abort suspend
    ");
    		return;
    	}
    
    	entry_event_num = current_event_num;
    	sys_sync();
    	if (debug_mask & DEBUG_SUSPEND)
    		pr_info("suspend: enter suspend
    ");
    	getnstimeofday(&ts_entry);
    	ret = pm_suspend(requested_suspend_state);
    	getnstimeofday(&ts_exit);
    
    	if (debug_mask & DEBUG_EXIT_SUSPEND) {
    		struct rtc_time tm;
    		rtc_time_to_tm(ts_exit.tv_sec, &tm);
    		pr_info("suspend: exit suspend, ret = %d "
    			"(%d-%02d-%02d %02d:%02d:%02d.%09lu UTC)
    ", ret,
    			tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
    			tm.tm_hour, tm.tm_min, tm.tm_sec, ts_exit.tv_nsec);
    	}
    
    	if (ts_exit.tv_sec - ts_entry.tv_sec <= 1) {
    		++suspend_short_count;
    
    		if (suspend_short_count == SUSPEND_BACKOFF_THRESHOLD) {
    			suspend_backoff();
    			suspend_short_count = 0;
    		}
    	} else {
    		suspend_short_count = 0;
    	}
    
    	if (current_event_num == entry_event_num) {
    		if (debug_mask & DEBUG_SUSPEND)
    			pr_info("suspend: pm_suspend returned with no event
    ");
    		wake_lock_timeout(&unknown_wakeup, HZ / 2);
    	}
    }
    

    suspend函数中,通过pm_suspend(requested_suspend_state)进入suspend操作。这个里面也有唤醒操作,只有等唤醒后才会跳出pm_suspend,跳出后会打印log:suspend:exit suspend, ret =pm_suspend就是判断传入的state是否符合suspend,符合就调用enter_state(state),到现在开始才进入了linux标准的suspend流程。

    pm_suspend的路径:kernel/kernel/power/suspend.c

    int pm_suspend(suspend_state_t state)
    {
    	if (state > PM_SUSPEND_ON && state < PM_SUSPEND_MAX)
    		return enter_state(state);
    	return -EINVAL;
    }
    EXPORT_SYMBOL(pm_suspend);

    enter_state这个函数主要有三个函数调用,分别是suspend_prepare,suspend_devices_and_enter,suspend_finish。

    /**
     *	enter_state - Do common work of entering low-power state.
     *	@state:		pm_state structure for state we're entering.
     *
     *	Make sure we're the only ones trying to enter a sleep state. Fail
     *	if someone has beat us to it, since we don't want anything weird to
     *	happen when we wake up.
     *	Then, do the setup for suspend, enter the state, and cleaup (after
     *	we've woken up).
     */
    int enter_state(suspend_state_t state)
    {
    	int error;
    
    	if (!valid_state(state))
    		return -ENODEV;
    
    	if (!mutex_trylock(&pm_mutex))
    		return -EBUSY;
    
    	printk(KERN_INFO "PM: Syncing filesystems ... ");
    	sys_sync();
    	printk("done.
    ");
    
    	pr_debug("PM: Preparing system for %s sleep
    ", pm_states[state]);
    	error = suspend_prepare();
    	if (error)
    		goto Unlock;
    
    	if (suspend_test(TEST_FREEZER))
    		goto Finish;
    
    	pr_debug("PM: Entering %s sleep
    ", pm_states[state]);
    	pm_restrict_gfp_mask();
    	error = suspend_devices_and_enter(state);
    	pm_restore_gfp_mask();
    
     Finish:
    	pr_debug("PM: Finishing wakeup.
    ");
    	suspend_finish();
     Unlock:
    	mutex_unlock(&pm_mutex);
    	return error;
    }
    


    suspend_prepare做一些睡眠的准备工作

    suspend_devices_and_enter就是真正的设备进入睡眠

    suspend_finish唤醒后进行的操作。

    下面来一个一个分析:

    suspend_prepare中首先通过pm_prepare_console,给suspend分配一个虚拟终端来输出信息;接着通过pm_notifier_call_chain来广播一个系统进入suspend的通报;关闭用户态的helper进程;最后通过suspend_freeze_processes来冻结用户态进程,最后会尝试释放一些内存。在suspend_freeze_processes()函数中调用了freeze_processes()函数,而freeze_processes()函数中又调用了try_to_freeze_tasks()来完成冻结任务。在冻结过程中,会判断当前进程是否有wake_lock,若有,则冻结失败,函数会放弃冻结。

    执行完上面的操作后再次回到enter_state函数中,下面开始调用suspend_devices_and_enter()函数让外设进入休眠。在suspend_devices_and_enter()中首先调用关于平台的suspend_ops->begin,接着通过suspend_console来关闭console,也可以通过改变一个flag来使这个函数无效。接着调用dpm_suspend_start。dpm_suspend_start中会执行device_prepare和device_suspend,这两个函数都是调用pm接口里的prepare和suspend函数(其实这里就开始通过总线的接口来执行驱动的suspend函数了,通过bus->pm->suspend)。接着回到suspend_devices_and_enter中调用suspend_enter(state);在suspend_enter中,首先调用平台相关的suspend_ops->prepare,接着执行dpm_suspend_noirq()调用pm接口里的pm->suspend_noirq,回到suspend_enter,接着调用suspend_ops->prepare_late,接下来多cpu中非启动的cpu通过函数disable_nonboot_cpus()被关闭,然后通过调用arch_suspend_disable_irqs()关闭本地中断。再后来才到睡眠设备的操作,sysdev_suspend(PMSG_SUSPEND),这样就会进入sysdev_driver.suspend阶段。最后调用suspend_ops->enter(),这里就开始执行到睡眠的最后一步了,执行平台相关的睡眠。在平台睡眠的代码中主要是通过suspend_in_iram(suspend_param1)来执行一段汇编代码,最终在汇编中睡死。唤醒的步骤与睡眠的步骤相反,cpu有电后会首先从汇编中起来,接着回到suspend_enter函数中,执行suspend_ops->enter()返回后的一些唤醒代码,这边就不再去说了,基本是按照上面的逆序来操作的。

    上面的过程在我看来还是很复杂的,power management 要好好研究一下了

    resume的过程

    唤醒的时候,程序从suspend_devices_and_enter函数中出来后,开始执行suspend_finish,接着就会从enter_state中退出来,返回pm_suspend,然后又从pm_suspend返回到wakelock.c中的suspend(),在这里接下来就会打印出”suspend:exit suspend, ret“这些log。

    下面是网上大牛画的一张睡眠唤醒的流程图,总结的很是到位,非常感谢,分享链接:http://blog.csdn.net/android_huber/article/details/7399476





  • 相关阅读:
    Problem F
    Problem L
    Problem L
    Problem B
    Problem B
    读书笔记-Java设计模式
    读书笔记-内存初始化和清理
    读书笔记- 一切都是对象
    Android多点触控技术实战,自由地对图片进行缩放和移动
    Native开发与JNI机制详解
  • 原文地址:https://www.cnblogs.com/snake-hand/p/3163065.html
Copyright © 2011-2022 走看看