zoukankan      html  css  js  c++  java
  • Poj1458--Common Subsequence(LCS模板)

    Common Subsequence
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 43212   Accepted: 17527

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    Source

     
    LCS 算法
    首先,考虑如何递归地计算 LCS。令:
    
    C1 是 S1 最右侧的字符
    C2 是 S2 最右侧的字符
    S1' 是 S1 中 “切掉” C1 的部分
    S2' 是 S2 中 “切掉” C2 的部分
    有三个递归子问题:
    
    L1 = LCS(S1', S2)
    L2 = LCS(S1, S2')
    L3 = LCS(S1', S2')
    结果表明(而且很容易使人相信)原始问题的解就是下面三个子序列中最长的一个:
    
    L1
    L2
    如果 C1 等于 C2,则为 L3 后端加上 C1 ,如果 C1 不等于 C2,则为 L3。
    (基线条件(base case)是 S1 或 S2 为长度为零的字符串的情形。在这种情况下,S1 和 S2 的 LCS 显然是长度为零的字符串。)
    LCS算法
     
     1 #include <cstdio>
     2 #include <cstring>
     3 #include <iostream>
     4 #define max(a, b) a>b?a:b
     5 using namespace std;
     6 char s1[1010], s2[1010];
     7 int dp[1010][1010];
     8 int main()
     9 {
    10     while(~scanf("%s %s", s1, s2))
    11     {
    12         memset(dp, 0, sizeof(dp));
    13         int len1 = strlen(s1);
    14         int len2 = strlen(s2);
    15         int i, j;
    16         for(i = 1; i <= len1; i++)
    17         {
    18             for(j = 1; j <= len2; j++)
    19             {
    20                 if(s1[i-1] == s2[j-1])
    21                     dp[i][j] = dp[i-1][j-1] + 1;
    22                 else
    23                     dp[i][j] = max(dp[i-1][j],dp[i][j-1]);
    24             }    
    25         }    
    26         printf("%d
    ", dp[len1][len2]);
    27     } 
    28     return 0;
    29 }
  • 相关阅读:
    中国软件技术篇
    create pdf
    我来了
    补丁号
    rdlc里面用VB语法对数值型数据进行Format
    WinForm中有些控件不能添加ToolTip关联的解决方法
    javascript弹出对话框
    省市县关联菜单
    委托与事件
    ASP.NET多文件上传方案
  • 原文地址:https://www.cnblogs.com/soTired/p/4717476.html
Copyright © 2011-2022 走看看