The Euler function
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4559 Accepted Submission(s): 1902
Problem Description
The Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are smaller than n and coprime to n, and this function has a lot of beautiful characteristics. Here comes a very easy question: suppose you are given a, b, try to calculate (a)+ (a+1)+....+ (b)
Input
There are several test cases. Each line has two integers a, b (2<a<b<3000000).
Output
Output the result of (a)+ (a+1)+....+ (b)
Sample Input
3 100
Sample Output
3042
Source
Recommend
欧拉函数是指:对于一个正整数n,小于n且和n互质的正整数(包括1)的个数,记作φ(n) 。
通式:φ(x)=x*(1-1/p1)*(1-1/p2)*(1-1/p3)*(1-1/p4)…..(1-1/pn),其中p1, p2……pn为x的所有质因数,x是不为0的整数。φ(1)=1(唯一和1互质的数就是1本身)。
对于质数p,φ(p) = p - 1。注意φ(1)=1.
欧拉定理:对于互质的正整数a和n,有aφ(n) ≡ 1 mod n。
欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。
若n是质数p的k次幂,φ(n)=p^k-p^(k-1)=(p-1)p^(k-1),因为除了p的倍数外,其他数都跟n互质。
特殊性质:当n为奇数时,φ(2n)=φ(n)
欧拉函数还有这样的性质:
设a为N的质因数,若(N % a == 0 && (N / a) % a == 0) 则有E(N)=E(N / a) * a;若(N % a == 0 && (N / a) % a != 0) 则有:E(N) = E(N / a) * (a - 1)。
#include <cstdio> #include <cstring> #include <iostream> using namespace std; const int N = 3000010; int prime[N], isprime[N]; int phi[N]; void Get_phi() { int i, j, cnt = 0; for(i = 2; i < N; i++){ if(isprime[i] == 0){ prime[cnt++] = i; phi[i] = i-1; } for(j = 0; j < cnt && i*prime[j] < N; j++){ isprime[i*prime[j]]=1; if(i%prime[j]==0) phi[i*prime[j]]=phi[i]*prime[j]; else phi[i*prime[j]]=phi[i]*(prime[j]-1); } } } int main() { int a, b; Get_phi(); while(~scanf("%d %d", &a, &b)) { long long sum = 0; for(int i = a; i <= b; i++) sum += phi[i]; cout << sum << endl; } return 0; }