zoukankan      html  css  js  c++  java
  • Poj3723--Conscription(kl+****)

    Conscription
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 9677   Accepted: 3440

    Description

    Windy has a country, and he wants to build an army to protect his country. He has picked up N girls and M boys and wants to collect them to be his soldiers. To collect a soldier without any privilege, he must pay 10000 RMB. There are some relationships between girls and boys and Windy can use these relationships to reduce his cost. If girl x and boy y have a relationship d and one of them has been collected, Windy can collect the other one with 10000-d RMB. Now given all the relationships between girls and boys, your assignment is to find the least amount of money Windy has to pay. Notice that only one relationship can be used when collecting one soldier.

    Input

    The first line of input is the number of test case.
    The first line of each test case contains three integers, NM and R.
    Then R lines followed, each contains three integers xiyi and di.
    There is a blank line before each test case.

    1 ≤ NM ≤ 10000
    0 ≤ R ≤ 50,000
    0 ≤ xi < N
    0 ≤ yi < M
    0 < di < 10000

    Output

    For each test case output the answer in a single line.

    Sample Input

    2
    
    5 5 8
    4 3 6831
    1 3 4583
    0 0 6592
    0 1 3063
    3 3 4975
    1 3 2049
    4 2 2104
    2 2 781
    
    5 5 10
    2 4 9820
    3 2 6236
    3 1 8864
    2 4 8326
    2 0 5156
    2 0 1463
    4 1 2439
    0 4 4373
    3 4 8889
    2 4 3133
    

    Sample Output

    71071
    54223
    

    Source

    题目: 题意读懂就好做了, 国王招兵, 需要n女m男(招1人需花费10000), 如果女孩和男孩之间有关系且关系值为d, 则招募这两人话费可以减免d。 求花费最少, 即减免最短, 用克鲁斯卡尔求最大生成森林。

    #include <cstdio>
    #include <algorithm>
    const int N = 20000;
    using namespace std;
    int father[N]; 
    int Q;
    struct Relationship{
        int a, b, c;
    }num[50001];
    bool cmp(Relationship a, Relationship b){
        return a.c > b.c;
    }
    void init(){
        for(int i = 0; i < Q; i++)
            father[i] = i;
    }
    int Find(int a){
        if(a == father[a])
            return a;
        else
            return father[a] = Find(father[a]);
    }
    bool Mercy(int a, int b){
        int P = Find(a);
        int O = Find(b);
        if(P != O){
            father[P] = O;
            return true;
        }
        return false;
    }
    int main(){
        int T;
        scanf("%d", &T);
        while(T--){
            int n, m, d;
            scanf("%d%d%d", &n, &m, &d);
            Q = n + m;
            init();    
            for(int i = 0; i < d; i++){
                int e, f, g;
                scanf("%d%d%d", &e, &f, &g);
                num[i].a = e; num[i].b = f+n; num[i].c = g;
            }
            sort(num, num+d, cmp);
            int sum = 0;
            for(int i = 0; i < d; i++){
                if(Mercy(num[i].a, num[i].b))
                    sum += num[i].c;
            }
            printf("%d
    ", Q*10000-sum);
        }
        return 0;
    }
  • 相关阅读:
    NC6开发配置流程
    触发器
    U8采购订单联查采购入库单
    sqlserver 游标
    windows服务 定时任务
    ORACLE 导入导出
    laravel 在模板中使select保存的值下单选中
    laravel 中request
    laravel中 url() route() URL::asset()
    laravel 中 后台管理的 路由设计
  • 原文地址:https://www.cnblogs.com/soTired/p/5016422.html
Copyright © 2011-2022 走看看