zoukankan      html  css  js  c++  java
  • Poj 3264--Balanced Lineup (RMQ)

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 43150   Accepted: 20266
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q.
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ ABN), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

     
    区间最值 ;
    #include <cmath>
    #include <cstdio>
    #define N 50000 + 1
    #include <iostream>
    using namespace std;
    int n, a[N], dpMax[N][20], dpMin[N][20]; 
    void RMQ()
    {
        for(int i=1; i<=n; i++)
        {
            dpMax[i][0]=a[i];
            dpMin[i][0]=a[i];
        }
        for(int j=1; (1<<j)<=n; j++)   
            for(int i=1; i+(1<<j)-1 <=n; i++)
            {
                dpMax[i][j]=max(dpMax[i][j-1], dpMax[i+(1<<(j-1))][j-1]);
                dpMin[i][j]=min(dpMin[i][j-1], dpMin[i+(1<<(j-1))][j-1]);
            }
    }
    int query(int l, int r)
    {
        int m=floor(log(r-l+1.0)/log(2.0));
        return max(dpMax[l][m], dpMax[r-(1<<m)+1][m])-min(dpMin[l][m], dpMin[r-(1<<m)+1][m]);
    }
    int main()
    {
        int Q; 
        while(scanf("%d%d", &n, &Q) != EOF)
        {
            for(int i=1; i<=n; i++)
                scanf("%d", &a[i]);
            RMQ();
            for(int i=0; i<Q; i++)
            {
                int l, r; scanf("%d%d", &l, &r);
                printf("%d
    ", query(l, r));
            }
        }
        return 0;
    }
  • 相关阅读:
    (转)viso 形状搜索 无法使用 的解决办法
    Visio 2003 直线需要相交时的设置方法
    C# Serialport执行close()方法时,程序卡死的解决办法
    RabbitMQ核心技术总结
    kafka核心原理总结
    hadoop的价值在哪里
    从程序员小仙飞升上神,java技术开发要如何实现?
    明年大数据行业的趋势会是哪些?
    2016年末程序员应该知道的基本架构思想
    2016年末程序员突破自我的绝密方法分享
  • 原文地址:https://www.cnblogs.com/soTired/p/5367532.html
Copyright © 2011-2022 走看看