zoukankan      html  css  js  c++  java
  • hdoj2874 -- Connections between cities(LCA--tarjan离线)

    Connections between cities

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 8041    Accepted Submission(s): 1994


    Problem Description
    After World War X, a lot of cities have been seriously damaged, and we need to rebuild those cities. However, some materials needed can only be produced in certain places. So we need to transport these materials from city to city. For most of roads had been totally destroyed during the war, there might be no path between two cities, no circle exists as well.
    Now, your task comes. After giving you the condition of the roads, we want to know if there exists a path between any two cities. If the answer is yes, output the shortest path between them.
     
    Input
    Input consists of multiple problem instances.For each instance, first line contains three integers n, m and c, 2<=n<=10000, 0<=m<10000, 1<=c<=1000000. n represents the number of cities numbered from 1 to n. Following m lines, each line has three integers i, j and k, represent a road between city i and city j, with length k. Last c lines, two integers i, j each line, indicates a query of city i and city j.
     
    Output
    For each problem instance, one line for each query. If no path between two cities, output “Not connected”, otherwise output the length of the shortest path between them.
     
    Sample Input
    5 3 2 1 3 2 2 4 3 5 2 3 1 4 4 5
     
    Sample Output
    Not connected 6
    Hint
    Hint Huge input, scanf recommended.
     
    Source
     
    Recommend
    gaojie   |   We have carefully selected several similar problems for you:  2873 2876 2872 2875 2877
     
    最短路;
    #include <cstdio>
    #include <cstring>
    
    #define N 10010
    #define M 20010
    #define C 2000010
    
    struct Edge{
        int to, next, dis;
        Edge() {}
        Edge(int to, int dis, int next): to(to), dis(dis), next(next){};
    }E[M];
    
    struct Edge2{
        int to, next, w;
        Edge2() {}
        Edge2(int to, int w, int next): to(to), w(w), next(next) {};
    }E2[C];
    
    int n, m, c, tot, tot2;
    int head[N], head2[N], dis[N], f[N], vis[N];
    
    void addEdge(int u, int v, int dis){ 
        E[tot]= Edge(v, dis, head[u]);
        head[u]=tot++;
        E[tot]= Edge(u, dis, head[v]);
        head[v]=tot++;
    }
    
    void addEdge2(int u, int v){
        E2[tot2]= Edge2(v, -1, head2[u]);
        head2[u]=tot2++;
        E2[tot2]= Edge2(u, -1, head2[v]);
        head2[v]=tot2++;
    }
    /*void addEdge(int u, int v, int dis) {
        E[tot].to = v; E[tot].next = head[u]; E[tot].dis = dis; head[u] = tot++;
        u = u ^ v; v = u ^ v; u = u ^ v;
        E[tot].to = v; E[tot].next = head[u]; E[tot].dis = dis; head[u] = tot++;
    }
    
    void addEdge2(int u, int v) {
        E2[tot2].to = v; E2[tot2].next = head2[u]; E2[tot2].w = -1; head2[u] = tot2++;
        u = u ^ v; v = u ^ v; u = u ^ v;
        E2[tot2].to = v; E2[tot2].next = head2[u]; E2[tot2].w = -1; head2[u] = tot2++;
    }*/
    void init()
    {
        memset(head, -1, sizeof(head));
        memset(head2, -1, sizeof(head2));
        tot=tot2=0;
        
        int u, v, d;
        for(int i=0; i< m; i++)
        {
            scanf("%d%d%d", &u, &v, &d);
            addEdge(u, v, d); 
        } 
        
        for(int i=0; i<c; i++)
        {
            scanf("%d%d", &u, &v);
            addEdge2(u, v);
        }
        memset(vis, 0, sizeof(vis));
    }
    
    int find(int x){
        return x==f[x]?  x: f[x]=find(f[x]);
    }
    
    void tarjan(int u, int time)
    {
        vis[u]= time;
        f[u]= u;
        
        int v;
        for(int i=head[u]; ~i; i=E[i].next)
        {
            v=E[i].to;
            if(vis[v])
                continue;
            dis[v]= dis[u]+ E[i].dis;
            tarjan(v, time);
            f[v]= u;    
        } 
        
        for(int i= head2[u]; ~i; i=E2[i].next)
        {
            v=E2[i].to;
            if(vis[v]== time)
                E2[i].w= E2[i^1].w = dis[u]+dis[v]- 2*dis[find(v)];
        }
    } 
    void solve()
    {
        int cnt=1;
        for(int i=1; i<=n; i++){
            if(!vis[i]){
                dis[i]= 0;
                tarjan(i, cnt); 
            } 
            cnt++;
        }
        
        for(int i=0; i< tot2; i +=2){
            if(E2[i].w == -1)
                printf("Not connected
    ");
            else
                printf("%d
    ", E2[i].w)  ;
        }
    }
    int main()
    {
        while(scanf("%d%d%d", &n, &m, &c) != EOF)
        {
            init();
            solve();
        }
        return 0;
    }
  • 相关阅读:
    Oracle9i数据库移动过程
    基于索引的SQL语句优化之降龙十八掌
    activex发布步骤
    用ftpsupport进行ftp上传
    周五晚上看了变形金刚
    故宫游
    UTF8转GB2312
    跨数据库的视图【自己留着看】
    数学之美 - 布隆过滤器(Bloom Filter)【转】
    搜索引擎优化SEO的ppt讲义
  • 原文地址:https://www.cnblogs.com/soTired/p/5369609.html
Copyright © 2011-2022 走看看