zoukankan      html  css  js  c++  java
  • HDU 1532 Drainage Ditches (网络流)

    A - Drainage Ditches
    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u
     

    Description

    Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
    Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
    Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 
     

    Input

    The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch. 
     

    Output

    For each case, output a single integer, the maximum rate at which water may emptied from the pond. 
     

    Sample Input

    5 4 1 2 40 1 4 20 2 4 20 2 3 30 3 4 10
     

    Sample Output

    50
     
     
    题意: 给一个有向有环图,给出每条边到容量上限,无下限,源点是1,汇点是n,求最大流。赤裸裸点网络流,我用的ISAP算法。第一次过点网络流^_^
     
    思路: ISAP模板过。白书上没给ISAP的BFS。。搞了好久才知道怎么改。。
     
    代码
     
    #include <vector>
    #include <cstdio>
    #include <cstring>
    #include <queue>
    #define FOR(i,n) for(i=1;i<=(n);i++)
    using namespace std;
    const int INF = 2e9+10;
    const int N = 210;
    
    struct Edge{
        int from,to,cap,flow;
    };
    
    struct ISAP{
        int n,m,s,t;
        int p[N],num[N];
        vector<Edge> edges;
        vector<int> G[N];
        bool vis[N];
        int d[N],cur[N];
        void init(int _n,int _m)
        {
            n=_n; m=_m;
            int i;
            edges.clear();
            FOR(i,n)
            {
                G[i].clear();
                d[i]=INF;
            }
        }
        void AddEdge(int from,int to,int cap)
        {
            edges.push_back((Edge){from,to,cap,0});
            edges.push_back((Edge){to,from,0,0});
            m = edges.size();
            G[from].push_back(m-2);
            G[to].push_back(m-1);
        }
        bool BFS()
        {
            memset(vis,0,sizeof(vis));
            queue<int> Q;
            Q.push(t);
            d[t]=0;
            vis[t]=1;
            while(!Q.empty())
            {
                int x = Q.front(); Q.pop();
                for(unsigned i=0;i<G[x].size();i++)
                {
                    Edge& e = edges[G[x][i]^1];
                    if(!vis[e.from] && e.cap>e.flow)
                    {
                        vis[e.from]=1;
                        d[e.from] = d[x]+1;
                        Q.push(e.from);
                    }
                }
            }
            return vis[s];
        }
        int Augment()
        {
            int x=t, a=INF;
            while(x!=s)
            {
                Edge& e = edges[p[x]];
                a = min(a,e.cap-e.flow);
                x = edges[p[x]].from;
            }
            x = t;
            while(x!=s)
            {
                edges[p[x]].flow+=a;
                edges[p[x]^1].flow-=a;
                x=edges[p[x]].from;
            }
            return a;
        }
        int Maxflow(int _s,int _t)
        {
            s=_s; t=_t;
            int flow = 0, i;
            BFS();
    //        FOR(i,n) printf("%d ",d[i]); puts("");
            if(d[s]>=n) return 0;
            memset(num,0,sizeof(num));
            memset(p,0,sizeof(p));
            FOR(i,n) if(d[i]<INF) num[d[i]]++;
            int x=s;
            memset(cur,0,sizeof(cur));
            while(d[s]<n)
            {
                if(x==t)
                {
                    flow+=Augment();
                    x=s;
                }
                int ok=0;
                for(unsigned i=cur[x];i<G[x].size();i++)
                {
                    Edge& e=edges[G[x][i]];
                    if(e.cap>e.flow && d[x]==d[e.to]+1)
                    {
                        ok=1;
                        p[e.to]=G[x][i];
                        cur[x]=i;
                        x=e.to;
                        break;
                    }
                }
                if(!ok)
                {
                    int m=n-1;
                    for(unsigned i=0;i<G[x].size();i++)
                    {
                        Edge& e=edges[G[x][i]];
                        if(e.cap>e.flow) m=min(m,d[e.to]);
                    }
                    if(--num[d[x]]==0) break;
                    num[d[x]=m+1]++;
                    cur[x]=0;
                    if(x!=s) x=edges[p[x]].from;
                }
            }
            return flow;
        }
    };
    
    ISAP isap;
    
    int main()
    {
        freopen("in","r",stdin);
        int n,m,u,v,c;
        while(scanf("%d%d",&m,&n)!=EOF)
        {
            isap.init(n,m);
            while(m--)
            {
                scanf("%d%d%d",&u,&v,&c);
                isap.AddEdge(u,v,c);
                //isap.AddEdge(v,u,c);
            }
            printf("%d
    ",isap.Maxflow(1,n));
        }
        return 0;
    }

    ISAP 模板

    注意用宏定义的FOR来做点的初始化,有些题目点所从0开始编号有些所从1开始,所以需要用一个宏定义

    struct Edge{
        int from,to,cap,flow;
    };
    
    struct ISAP{
        int n,m,s,t;
        int p[N],num[N];
        vector<Edge> edges;
        vector<int> G[N];
        bool vis[N];
        int d[N],cur[N];
        void init(int _n,int _m)
        {
            n=_n; m=_m;
            int i;
            edges.clear();
            FOR(i,n)
            {
                G[i].clear();
                d[i]=INF;
            }
        }
        void AddEdge(int from,int to,int cap)
        {
            edges.push_back((Edge){from,to,cap,0});
            edges.push_back((Edge){to,from,0,0});
            m = edges.size();
            G[from].push_back(m-2);
            G[to].push_back(m-1);
        }
        bool BFS()
        {
            memset(vis,0,sizeof(vis));
            queue<int> Q;
            Q.push(t);
            d[t]=0;
            vis[t]=1;
            while(!Q.empty())
            {
                int x = Q.front(); Q.pop();
                for(unsigned i=0;i<G[x].size();i++)
                {
                    Edge& e = edges[G[x][i]^1];
                    if(!vis[e.from] && e.cap>e.flow)
                    {
                        vis[e.from]=1;
                        d[e.from] = d[x]+1;
                        Q.push(e.from);
                    }
                }
            }
            return vis[s];
        }
        int Augment()
        {
            int x=t, a=INF;
            while(x!=s)
            {
                Edge& e = edges[p[x]];
                a = min(a,e.cap-e.flow);
                x = edges[p[x]].from;
            }
            x = t;
            while(x!=s)
            {
                edges[p[x]].flow+=a;
                edges[p[x]^1].flow-=a;
                x=edges[p[x]].from;
            }
            return a;
        }
        int Maxflow(int _s,int _t)
        {
            s=_s; t=_t;
            int flow = 0, i;
            BFS();
            if(d[s]>=n) return 0;
            memset(num,0,sizeof(num));
            memset(p,0,sizeof(p));
            FOR(i,n) num[d[i]]++;
            int x=s;
            memset(cur,0,sizeof(cur));
            while(d[s]<n)
            {
                if(x==t)
                {
                    flow+=Augment();
                    x=s;
                }
                int ok=0;
                for(unsigned i=cur[x];i<G[x].size();i++)
                {
                    Edge& e=edges[G[x][i]];
                    if(e.cap>e.flow && d[x]==d[e.to]+1)
                    {
                        ok=1;
                        p[e.to]=G[x][i];
                        cur[x]=i;
                        x=e.to;
                        break;
                    }
                }
                if(!ok)
                {
                    int m=n-1;
                    for(unsigned i=0;i<G[x].size();i++)
                    {
                        Edge& e=edges[G[x][i]];
                        if(e.cap>e.flow) m=min(m,d[e.to]);
                    }
                    if(--num[d[x]]==0) break;
                    num[d[x]=m+1]++;
                    cur[x]=0;
                    if(x!=s) x=edges[p[x]].from;
                }
            }
            return flow;
        }
    };
     
     
     
     
  • 相关阅读:
    周4早上搜索引擎分析 crmim.com| MSCRM开发者之家
    Bat命令学习
    sqlserver日期函数
    ubunto应用软件
    sql for xml
    win7x64 连接oracle 客户端 vs 2010调试 提示“ORA12154: TNS: 无法解析指定的连接标识符 ”ORA06413 问题(转)
    CentOS Rsync服务端与Windows cwRsync客户端实现数据同步
    怎么引导2岁孩子洗手问题
    Libnfcinstallation
    Asterisk资料
  • 原文地址:https://www.cnblogs.com/someblue/p/3966903.html
Copyright © 2011-2022 走看看