zoukankan      html  css  js  c++  java
  • HDU 3549 Flow Problem (最大流ISAP)

    Flow Problem

    Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
    Total Submission(s): 8199    Accepted Submission(s): 3814


    Problem Description
    Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
     
    Input
    The first line of input contains an integer T, denoting the number of test cases.
    For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
    Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
     
    Output
    For each test cases, you should output the maximum flow from source 1 to sink N.
     
    Sample Input
    2 3 2 1 2 1 2 3 1 3 3 1 2 1 2 3 1 1 3 1
     
    Sample Output
    Case 1: 1
    Case 2: 2
     
    题意:给一个有向图,求源点为1汇点为n的最大流
     
    思路:裸题,ISAP。。原来之前自己写的模版有点疏漏了。。
     
    #include <vector>
    #include <cstdio>
    #include <cstring>
    #include <queue>
    #define FOR(i,n) for(i=1;i<=(n);i++)
    using namespace std;
    const int INF = 1e9;
    const int N = 1010;
    
    struct Edge{
        int from,to,cap,flow;
    };
    
    struct ISAP{
        int n,m,s,t;
        int p[N],num[N];
        vector<Edge> edges;
        vector<int> G[N];
        bool vis[N];
        int d[N],cur[N];
        void init(int _n,int _m)
        {
            n=_n; m=_m;
            int i;
            edges.clear();
            FOR(i,n)
            {
                G[i].clear();
                d[i]=INF;
            }
        }
        void AddEdge(int from,int to,int cap)
        {
            edges.push_back((Edge){from,to,cap,0});
            edges.push_back((Edge){to,from,0,0});
            m = edges.size();
            G[from].push_back(m-2);
            G[to].push_back(m-1);
        }
        bool BFS()
        {
            memset(vis,0,sizeof(vis));
            queue<int> Q;
            Q.push(t);
            d[t]=0;
            vis[t]=1;
            while(!Q.empty())
            {
                int x = Q.front(); Q.pop();
                for(unsigned i=0;i<G[x].size();i++)
                {
                    Edge& e = edges[G[x][i]^1];
                    if(!vis[e.from] && e.cap>e.flow)
                    {
                        vis[e.from]=1;
                        d[e.from] = d[x]+1;
                        Q.push(e.from);
                    }
                }
            }
            return vis[s];
        }
        int Augment()
        {
            int x=t, a=INF;
            while(x!=s)
            {
                Edge& e = edges[p[x]];
                a = min(a,e.cap-e.flow);
                x = edges[p[x]].from;
            }
            x = t;
            while(x!=s)
            {
                edges[p[x]].flow+=a;
                edges[p[x]^1].flow-=a;
                x=edges[p[x]].from;
            }
            return a;
        }
        int Maxflow(int _s,int _t)
        {
            s=_s; t=_t;
            int flow = 0, i;
            BFS();
            if(d[s]>=n) return 0;
            memset(num,0,sizeof(num));
            memset(p,0,sizeof(p));
            FOR(i,n) if(d[i]<INF) num[d[i]]++;
            int x=s;
            memset(cur,0,sizeof(cur));
            while(d[s]<n)
            {
                if(x==t)
                {
                    flow+=Augment();
                    x=s;
                }
                int ok=0;
                for(unsigned i=cur[x];i<G[x].size();i++)
                {
                    Edge& e=edges[G[x][i]];
                    if(e.cap>e.flow && d[x]==d[e.to]+1)
                    {
                        ok=1;
                        p[e.to]=G[x][i];
                        cur[x]=i;
                        x=e.to;
                        break;
                    }
                }
                if(!ok)
                {
                    int m=n-1;
                    for(unsigned i=0;i<G[x].size();i++)
                    {
                        Edge& e=edges[G[x][i]];
                        if(e.cap>e.flow) m=min(m,d[e.to]);
                    }
                    if(--num[d[x]]==0) break;
                    num[d[x]=m+1]++;
                    cur[x]=0;
                    if(x!=s) x=edges[p[x]].from;
                }
            }
            return flow;
        }
    };
    
    ISAP isap;
    
    void run()
    {
        int n,m,u,v,c;
        scanf("%d%d",&n,&m);
        isap.init(n,m);
        while(m--)
        {
            scanf("%d%d%d",&u,&v,&c);
            isap.AddEdge(u,v,c);
            //isap.AddEdge(v,u,c);
        }
        static int cas = 1;
        printf("Case %d: %d
    ",cas++,isap.Maxflow(1,n));
    }
    
    int main()
    {
        freopen("case.txt","r",stdin);
        int _;
        scanf("%d",&_);
        while(_--)
            run();
        return 0;
    }
     
  • 相关阅读:
    UI:UITableView表视图
    UI:页面传值、单例模式传值、属性传值、NSUserDefaults 数据持久化
    UI:UINavigationController、界面通信
    UI:UIScrollView、UIPageControl
    UI:tomcat(说话小程序)、相框动画、UISgmentcontrol、UISwitch
    UI:触摸事件 与 事件的回应
    UI:转自互联网资料
    UI:MVC设计模式
    OC:copy 与 retain 的区别
    UI:数据持久化
  • 原文地址:https://www.cnblogs.com/someblue/p/3967106.html
Copyright © 2011-2022 走看看