zoukankan      html  css  js  c++  java
  • 图形学之卷积滤波器

    博客目录:

    一、盒式滤波器

    二、帐篷式滤波器

    三、高斯滤波器

    四、三次B样条滤波器

    五、三次 Catmull-Rom 滤波器

    六、三次Mitchell-Netravali滤波器


    当有了卷积工具,下面介绍图形学常用的几种滤波器:

    一、盒式滤波器

    盒式滤波器是一个分段常值函数,它的积分结果为1。

    1. 离散滤波器,其数学形式为:

    [a_{box,r}[i] = egin{cases} 1/(2r + 1) & |i|leq r\ 0 & mbox{其他} end{cases} ]

    为了保持对称性,函数定义包含了两个端点。

    1. 连续滤波器数学形式:

    [f_{box,r}(x) = egin{cases} 1/(2r) & -r leq x <r \ 0 & mbox{其他} end{cases} ]

    此时只包含一个端点,使得半径为0.5的盒子能用作重构滤波器。因为盒式滤波器不是连续的,需要格外注意这些边界情况。


    二、帐篷式滤波器

    帐篷式滤波器(也为“线性滤波器”),是分段连续的线性函数:

    [f_{tent}(x) = egin{cases} 1 -|x| & |x|<1 \ 0 & mbox{其他} \ end{cases} \ f_{tent,r}(x) = frac{f_{tent}(x/r)}{r} ]

    帐篷式滤波器没有值的跳变情况,不需将离散和连续情况分开。通过缩放标准大小的帐篷式滤波器(f_{tent})来定义 (f_{tent,r})。如果定义了滤波器(f),那么就可以用(f_r)来表示“滤波器伸展(r)倍(收缩(r)倍)”。但是(f_r)(f)有相同的积分效果,并且积分结果等于1。


    三、高斯滤波器

    高斯滤波器(也称“正态滤波器”),没有有限支撑集(定义域(-infty ightarrow +infty)),必要时可将函数进行截尾处理,将某个半径之外的值都设为0。高斯滤波器因为其平滑的特性,是一种不错的采样滤波器。


    四、三次B样条滤波器

    三次滤波器有4段,经常被用作重构。这种也被称为B样条滤波器,起源于作为样条曲线的混合函数:

    [f_{a}(x) = 1/6 egin{cases} -3(1-|x|)^3 + 3(1-|x|)^2 + 3(1-|x|) +1 & -1 leq x leq 1\ (2-|x|)^3 & 1 leq |x| leq 2 \ 0 & mbox{其他} end{cases} ]


    五、三次 Catmull-Rom 滤波器


    这是另一种三次滤波器,如图在x=-2 、-1、 1、 2处函数值为0,可用作重构滤波器插值样本。数学表达形式:

    [f_{C}(x) = 1/2 egin{cases} -3(1-|x|)^3 + 4(1-|x|)^2 + 3(1-|x|) +1 & -1 leq x leq 1\ (2-|x|)^3-(2-|x|)^2 & 1 leq |x| leq 2 \ 0 & mbox{其他} end{cases} ]


    六、三次Mitchell-Netravali滤波器

    三次Mitchell-Netravali滤波器用于解决重采样图像问题,在上述两种三次滤波器中折中改进,这种滤波器是前面两种滤波器的加权组合。上图的数学表达式:

    [f_{M}(x) =frac{1}{3}f_{B}(x)+frac{2}{3}f_{C}(x) = frac{1}{18} egin{cases} -21(1-|x|)^3 + 27(1-|x|)^2 + 9(1-|x|) +1 & -1 leq x leq 1\ 7(2-|x|)^3-6(2-|x|)^2 & 1 leq |x| leq 2 \ 0 & mbox{其他} end{cases} ]

  • 相关阅读:
    double 和 int 同时存在时的运算
    快速排序
    案例:商品放大镜效果
    淘宝flexible.js源码分析
    案例:模态框拖拽
    Web APIs——BOM
    案例:获取URL参数数据
    案例:5秒之后自动跳转页面
    JS中this指针的指向
    按钮:点击发送短信按钮60秒内不能再次点击的功能
  • 原文地址:https://www.cnblogs.com/somedayLi/p/12577683.html
Copyright © 2011-2022 走看看