zoukankan      html  css  js  c++  java
  • Lecture16_光线追踪4(Ray Tracing 4)_GAMES101 课堂笔记

    上节课内容:

    本节课内容:

    一、蒙特卡罗积分(Monte Carlo Integration)

    why : 对于一些很难写出解析式的曲线,很难求其积分。因此引入蒙特卡罗积分计算。

    What & How:通过平均函数值的随机样本估计整体功能的(计算每个采样点 x 对应的函数值 f(x)(长方形的高) ( imes) 区间长度 [a,b]。将所有的长方形面积求和再求平均——即为该积分值)。具体的理解步骤如下:

    some notes:

    1. The more samples, the less variance.
    2. Sample on x, integrate on x.

    二、路径追踪(Path Tracing)

    (一) 路径追踪引入

    why :因为对于 Whitted-Style 光线追踪有下面两个问题:

    问题1 —— 总是执行镜面反射

    比如上面这个“犹他茶壶”,对于左图表现为镜面反射当然没有问题;但是对于右边的磨砂材质,如果使用光线追踪依旧是按照镜面反射进行,会得到与左图同样的结果。显然是错误的。

    问题2 —— 在漫反射表面停止弹射

    比如,对于左图是使用光线追踪直接光照产生的效果,可以看见箱子靠墙的一面为黑色;但是对于右图中箱子靠墙的一面分别表现为红色、绿色,这就是对漫反射光线继续进行弹射(bounce)的结果(更符合现实)。

    “The Cornell box” 常被用于测试全局光照。

    (二)求解 Whitted-style Ray Tracing

    因此,这样来看某种程度上Whitted-style Ray Tracing是错误的,但是他的渲染方程是正确的。但是它包含:

    • 需要求解一个整体的半球体积分,会有来自四面八方的光照
    • 递归问题

    那么我们该如何求解这个整体的积分?

    蒙特卡罗求积分

    1. 详细步骤:

    PDF & PMF 概念与区别:

    PDF:对连续性随机变量的定义。与PMF不同的是PDF在特定点上的值并不是该点的概率, 连续随机概率事件只能求一段区域内发生事件的概率, 通过对这段区间进行积分来求。

    PMF:对离散随机变量的定义。是离散随机变量 在各个特定取值的概率。

    2. 一般式

    (三)全局光照

    对上图,主要有以下问题:

    1. 路径追踪——Explosion of #rays as #bounces go up:

    如果对每一条路径进行追踪,那么不断经过漫反射后计算会爆炸。示意图如下:

  • 相关阅读:
    TextView-setCompondDrawables用法
    android 相对布局RelativeLayout中的一些属性的使用和实例
    登录时旋转等待效果
    使用slidingmeu_actionbarsherlock_lib的问题和The hierarchy of the type MainActivity is inconsistent
    ActionBarSherlock SlidingMenu整合,解决SlidingMenu example的getSupportActionBar()方法不能用问题
    String,StringBuffer和StringBuilder的区别
    File.separator使用
    Android常用异步任务执行方法
    adb server is out of date. killing...
    adb shell root
  • 原文地址:https://www.cnblogs.com/somedayLi/p/12639538.html
Copyright © 2011-2022 走看看