zoukankan      html  css  js  c++  java
  • 深度学习框架-caffe安装-Mac OSX 10.12

    深度学习框架-caffe安装

    [Mac OSX 10.12]

     

    参考资源

    1.英文原文:(使用GPU)

    [http://hoondy.com/2015/04/03/how-to-install-caffe-on-mac-os-x-10-10-for-dummies-like-me/]

    2.基于1的两篇中文博客:

    [http://ylzhao.blogspot.kr/2015/04/mac-os-x-1010caffe.html]

    [http://www.jianshu.com/p/8795b882ea67]

    3.无GPU,仅使用CPU的情况下的配置

    [http://blog.csdn.net/u014696921/article/details/52156552]

    [http://www.phperz.com/article/16/1006/298567.html]

     

    —————————————————————————————

    我的电脑配置

    系统:MacBook Pro OS X Sierra 版本10.12.2

    CPU:2.7 GHz Intel Core i5

    显卡:Intel Iris Graphics 6100 1536 MB

     

    *如果显卡是NVIDIA的,可以使用GPU,需要安装cuda,cuda driver和cuDNN GPU库,并且在Makefile配置成使用GPU。参考资源中【1】【2】是有NVIDIA显卡的所以安装了cuda,cuda driver和cuDNN GPU库,最后的caffe的Makefile.config文件中配置成使用GPU

    *由于我电脑配置的不是NVIDIA显卡,所以不能使用cuda加速了,所以只能安装个CPU模式。可以忽略安装cuda,cuda driver和cuDNN的安装步骤,最后的caffe的Makefile.config文件中配置成仅使用CPU。

     

    详细安装步骤

    • Homebrew
    1. 根据 http://brew.sh/ 上面的说明安装Homebrew包管理

     

    • Anaconda Python
    1. 从https://store.continuum.io/cshop/anaconda/下载和安装Anaconda Python包(其中包括Caffe框架用到的hdf5
    2. export PATH=~/anaconda/bin:$PATH

     

    • BLAS - Intel MKL
    1. 由于Mac OS X操作系统自带的BLAS库存在一些不稳定的问题,因此我选择安装Intel MKL库。如果你是在校大学生,可以使用学校邮箱从https://software.intel.com/en-us/qualify-for-free-software/student页面申请Intel Parallel Studio XE 2017安装包(后面不要忘记在Makefile.config中设置BLAS:=MKL
    2. 确保在安装Intel Parallel XE时选择每一个组件(因为缺省情况下不会安装MKL组件)
    3. cd /opt/intel/mkl/lib/
    4. sudo ln -s . /opt/intel/mkl/lib/intel64(因为在编译Caffe时Caffe会从MKL的intel64目录中去搜索mkl的库,但是在安装MKL后,MKL的lib目录下并没有intel64这个目录,所以需要建立一个intel64目录到lib目录的软链接)

     

    • 通过Homebrew安装依赖项

    brew edit opencv 在自动打开的vim编辑器中将下面两行

    args << "-DPYTHON#{py_ver}_LIBRARY=#{py_lib}/libpython2.7.#{dylib}"

    args << "-DPYTHON#{py_ver}_INCLUDE_DIR=#{py_prefix}/include/python2.7"

    替换为

    args << "-DPYTHON_LIBRARY=#{py_prefix}/lib/libpython2.7.dylib"

    args << "-DPYTHON_INCLUDE_DIR=#{py_prefix}/include/python2.7"

    ***vim中具体操作是:

    i  从当前光标处进入插入模式,开始修改内容,esc 退出插入模式,:wq 保存修改并退出。

     

    brew install --fresh -vd snappy leveldb gflags glog szip lmdb homebrew/science/opencv

    brew install --build-from-source --with-python --fresh -vd protobuf

    brew install --build-from-source --fresh -vd boost boost-python

     

    • Github上面克隆Caffe的代码

    git clone https://github.com/BVLC/caffe.git

    cd caffe

    cp Makefile.config.example Makefile.config

     

    • 配置Makefile.config
    1. 设置BLAS := mkl(BLAS (使用intel mkl还是OpenBLAS))
    2. 取消USE_CUDNN := 1注释
    3. 检查并设置Python路径

    *** 首先修改文件权限:chmod g+w Makefile.config

    ***打开文件进行修改:sudo vim Makefile.config ;按“i”键开始修改,修改 :将# CPU_ONLY = 1前面的#去掉( 由于我没有NVIDIA的显卡,就没有安装CUDA,因此需要打开这个选项) 并按“tab”键,(默认从tab处执行),设置BLAS := mkl,检查并设置python路径,修改结束后按esc键,键入“:wq”保存并退出;

     

    ***以下是我的Makefile.config中的所有配置:(可以先在命令行中验证一下自己的文件路径,一定要根据自己路径进行设置!)

    ## Refer to http://caffe.berkeleyvision.org/installation.html

    # Contributions simplifying and improving our build system are welcome!

     

    # cuDNN acceleration switch (uncomment to build with cuDNN).

    # USE_CUDNN := 1

     

    # CPU-only switch (uncomment to build without GPU support).

    CPU_ONLY := 1

     

    # uncomment to disable IO dependencies and corresponding data layers

    # USE_OPENCV := 0

    # USE_LEVELDB := 0

    # USE_LMDB := 0

     

    # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)

    # You should not set this flag if you will be reading LMDBs with any

    # possibility of simultaneous read and write

    # ALLOW_LMDB_NOLOCK := 1

     

    # Uncomment if you're using OpenCV 3

    # OPENCV_VERSION := 3

     

    # To customize your choice of compiler, uncomment and set the following.

    # N.B. the default for Linux is g++ and the default for OSX is clang++

    # CUSTOM_CXX := g++

     

    # CUDA directory contains bin/ and lib/ directories that we need.

    CUDA_DIR := /usr/local/cuda

    # On Ubuntu 14.04, if cuda tools are installed via

    # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:

    # CUDA_DIR := /usr

     

    # CUDA architecture setting: going with all of them.

    # For CUDA < 6.0, comment the *_50 lines for compatibility.

    CUDA_ARCH := -gencode arch=compute_20,code=sm_20

    -gencode arch=compute_20,code=sm_21

    -gencode arch=compute_30,code=sm_30

    -gencode arch=compute_35,code=sm_35

    -gencode arch=compute_50,code=sm_50

    -gencode arch=compute_50,code=compute_50

     

    # BLAS choice:

    # atlas for ATLAS (default)

    # mkl for MKL

    # open for OpenBlas

    BLAS := mkl

    # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.

    # Leave commented to accept the defaults for your choice of BLAS

    # (which should work)!

    # BLAS_INCLUDE := /path/to/your/blas

    # BLAS_LIB := /path/to/your/blas

     

    # Homebrew puts openblas in a directory that is not on the standard search path

    # BLAS_INCLUDE := $(shell brew --prefix openblas)/include

    # BLAS_LIB := $(shell brew --prefix openblas)/lib

     

    # This is required only if you will compile the matlab interface.

    # MATLAB directory should contain the mex binary in /bin.

    # MATLAB_DIR := /usr/local

    # MATLAB_DIR := /Applications/MATLAB_R2012b.app

     

    # NOTE: this is required only if you will compile the python interface.

    # We need to be able to find Python.h and numpy/arrayobject.h.

    PYTHON_INCLUDE := /usr/include/python2.7

    /usr/lib/python2.7/dist-packages/numpy/core/include

    # Anaconda Python distribution is quite popular. Include path:

    # Verify anaconda location, sometimes it's in root.

    ANACONDA_HOME := $(HOME)/anaconda

    PYTHON_INCLUDE :=  $(ANACONDA_HOME)/include/python2.7

      $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include

      $(ANACONDA_HOME)/include

     

    # Uncomment to use Python 3 (default is Python 2)

    # PYTHON_LIBRARIES := boost_python3 python3.5m

    # PYTHON_INCLUDE := /usr/include/python3.5m

    #                 /usr/lib/python3.5/dist-packages/numpy/core/include

     

    # We need to be able to find libpythonX.X.so or .dylib.

    # PYTHON_LIB := /usr/lib

    PYTHON_LIB := $(ANACONDA_HOME)/lib

     

    # Homebrew installs numpy in a non standard path (keg only)

    # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include

    # PYTHON_LIB += $(shell brew --prefix numpy)/lib

     

    # Uncomment to support layers written in Python (will link against Python libs)

    # WITH_PYTHON_LAYER := 1

     

    # Whatever else you find you need goes here.

    INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include

    LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib

     

    # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies

    # INCLUDE_DIRS += $(shell brew --prefix)/include

    # LIBRARY_DIRS += $(shell brew --prefix)/lib

     

    # Uncomment to use `pkg-config` to specify OpenCV library paths.

    # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)

    # USE_PKG_CONFIG := 1

     

    # N.B. both build and distribute dirs are cleared on `make clean`

    BUILD_DIR := build

    DISTRIBUTE_DIR := distribute

     

    # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171

    # DEBUG := 1

     

    # The ID of the GPU that 'make runtest' will use to run unit tests.

    TEST_GPUID := 0

     

    # enable pretty build (comment to see full commands)

    Q ?= @

     

     

    • 设置环境变量
    1. export DYLD_FALLBACK_LIBRARY_PATH=/usr/local/cuda/lib:$HOME/anaconda/lib:/usr/local/lib:/usr/lib:/opt/intel/composer_xe_2015.2.132/compiler/lib:/opt/intel/composer_xe_2015.2.132/mkl/lib

    ***必须手动查看自己的文件路径!根据自己的路径添加环境变量,我的路径如下:

    export DYLD_FALLBACK_LIBRARY_PATH=$HOME/caffe/.build_release/lib:/usr/local/cuda/lib:$HOME/anaconda/lib:/usr/local/lib:/usr/lib:/opt/intel/compilers_and_libraries_2017.1.126/mac/compiler/lib:/opt/intel/compilers_and_libraries_2017.1.126/mac/mkl/lib/

     

    • 编译Caffe
    1. make clean
    2. make all
    3. make test
    4. make runtest
    5. make pycaffe
    6. make distribute

     

    ***make all的时候注意库的链接路径,make runtest注意,会有这样的一个问题DYLD_FALLBACK_LIBRARY_PATH is cleared by the new System Integrity Protection ,所以要把System Integrity Protection禁止掉:具体操作:电脑重新开机同时按住command+r,进入恢复模式,然后打开终端,输入csrutil disable,就关闭SIP了,重新启动电脑即可。

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

  • 相关阅读:
    TensorFlow_CNN_MNIST遇到的问题
    TensorFlow_CNN_MNIST问题
    TensorFlow_CNN内tf.nn.max_pool和tf.layers.max_pooling2d参数
    TensorFlow_CNN内tf.nn.conv2d和tf.layers.conv2d参数
    mysql 更新语句中加判断条件
    数据库 数据去重并取id最大的数据sql
    elasticsearch------java操作之QueryBuilders构建搜索Query
    Elasticsearch java api 基本搜索部分详解
    java 连接 elasticsearch 报错java.lang.NoClassDefFoundError: org/apache/http/auth/Credentials 解决
    java 获取文件内所有文件名
  • 原文地址:https://www.cnblogs.com/songdanzju/p/7465572.html
Copyright © 2011-2022 走看看