package com.qiusongde; import edu.princeton.cs.algs4.StdIn; import edu.princeton.cs.algs4.StdOut; public class UFWQuickUnionByHeight { private int[] id;//parent link(site indexed) private int[] treeheight;//size of component for roots(site indexed) private int count;//number of components public UFWQuickUnionByHeight(int N) { count = N; id = new int[N]; for(int i = 0; i < N; i++) id[i] = i; treeheight = new int[N]; for(int i = 0; i < N; i++) treeheight[i] = 0; } public int count() { return count; } public boolean connected(int p, int q) { return find(p) == find(q); } public int find(int p) { int root = p;//initialize root //find root(id[p] save the parent of p) while(root != id[root]) root = id[root]; return root; } public void union(int p, int q) { int pRoot = find(p); int qRoot = find(q); if(pRoot == qRoot) return; //make smaller root point to larger one if(treeheight[pRoot] < treeheight[qRoot]) { id[pRoot] = qRoot; } else if(treeheight[pRoot] == treeheight[qRoot]) { id[qRoot] = pRoot; treeheight[pRoot]++; } else { //treeheight[pRoot] > treeheight[qRott] id[qRoot] = pRoot; } count--; } @Override public String toString() { String s = ""; for(int i = 0; i < id.length; i++) { s += id[i] + " "; } s += " "; for(int i = 0; i < treeheight.length; i++) { s += treeheight[i] + " "; } s += " " + count + " components"; return s; } public static void main(String[] args) { //initialize N components int N = StdIn.readInt(); UFWQuickUnionByHeight uf = new UFWQuickUnionByHeight(N); StdOut.println(uf); while(!StdIn.isEmpty()) { int p = StdIn.readInt(); int q = StdIn.readInt(); if(uf.connected(p, q)) {//ignore if connected StdOut.println(p + " " + q + " is connected"); StdOut.println(uf); continue; } uf.union(p, q);//connect p and q StdOut.println(p + " " + q); StdOut.println(uf); } } }
运行结果:
0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0
10 components
4 3
0 1 2 4 4 5 6 7 8 9
0 0 0 0 1 0 0 0 0 0
9 components
3 8
0 1 2 4 4 5 6 7 4 9
0 0 0 0 1 0 0 0 0 0
8 components
6 5
0 1 2 4 4 6 6 7 4 9
0 0 0 0 1 0 1 0 0 0
7 components
9 4
0 1 2 4 4 6 6 7 4 4
0 0 0 0 1 0 1 0 0 0
6 components
2 1
0 2 2 4 4 6 6 7 4 4
0 0 1 0 1 0 1 0 0 0
5 components
8 9 is connected
0 2 2 4 4 6 6 7 4 4
0 0 1 0 1 0 1 0 0 0
5 components
5 0
6 2 2 4 4 6 6 7 4 4
0 0 1 0 1 0 1 0 0 0
4 components
7 2
6 2 2 4 4 6 6 2 4 4
0 0 1 0 1 0 1 0 0 0
3 components
6 1
6 2 6 4 4 6 6 2 4 4
0 0 1 0 1 0 2 0 0 0
2 components
1 0 is connected
6 2 6 4 4 6 6 2 4 4
0 0 1 0 1 0 2 0 0 0
2 components
6 7 is connected
6 2 6 4 4 6 6 2 4 4
0 0 1 0 1 0 2 0 0 0
2 components
证明可参照P229页的Proposition H的证明。