zoukankan      html  css  js  c++  java
  • 三大查找算法(Java实现)

    三大查找算法

    1.二分查找(Binary Search)

    public class BinarySearch {
        public static void main(String[] args) {
            int[] arr = {-4, -1, 0, 1, 2, 4, 5, 6, 7, 10};
            System.out.println(binarySearch1(arr, 1, 0, arr.length - 1));
            System.out.println(binarySearch2(arr, 1, 0, arr.length - 1));
            int[] arr2 = {-4, -1, 0, 1, 2, 4, 4, 5, 6, 7, 10};
            System.out.println(binarySearch3(arr2, 4, 0, arr.length - 1));
        }
    
        //非递归写法
        public static int binarySearch1(int[] arr, int key, int left, int right) {
            int mid;
            while (left <= right) {
                mid = (left + right) >> 1;
                if (key < arr[mid]) {
                    right = mid - 1;
                } else if (key > arr[mid]) {
                    left = mid + 1;
                } else {
                    return mid;
                }
            }
            return -1;
        }
    
        //递归写法
        public static int binarySearch2(int[] arr, int key, int left, int right) {
            if (left > right) {
                return -1;
            }
            int mid = (left + right) >> 1;
            if (key < arr[mid]) {
                return binarySearch1(arr, key, left, mid - 1);
            } else if (key > arr[mid]) {
                return binarySearch1(arr, key, mid + 1, right);
            } else {
                return mid;
            }
        }
    
        //可查找重复值
        public static ArrayList<Integer> binarySearch3(int[] arr, int key, int left, int right) {
            if (left > right) {
                return new ArrayList<>();
            }
            int mid = (left + right) >> 1;
            if (key < arr[mid]) {
                return binarySearch3(arr, key, left, mid - 1);
            } else if (key > arr[mid]) {
                return binarySearch3(arr, key, mid + 1, right);
            } else {
                ArrayList<Integer> list = new ArrayList<>();
                list.add(mid);
                int index = mid - 1;
                //向左搜索
                while (true) {
                    if (index < 0 || arr[index] != arr[mid]) {
                        break;
                    }
                    list.add(index);
                    index--;
                }
                index = mid + 1;
                //向右搜索
                while (true) {
                    if (index > arr.length - 1 || arr[index] != arr[mid]) {
                        break;
                    }
                    list.add(index);
                    index++;
                }
                return list;
            }
        }
    }
    

    2.插值查找(InsertValue Search)

    public class InsertValueSearch {
        public static void main(String[] args) {
            int[] arr = {-4, -1, 0, 1, 2, 4, 5, 6, 7, 10};
            System.out.println(insertValueSearch(arr, 1, 0, arr.length - 1));
        }
    
        public static int insertValueSearch(int[] arr, int key, int low, int high) {
            if (low > high) {
                return -1;
            }
            int mid = low + (high - low) * (key - arr[low]) / (arr[high] - arr[low]);
            if (key < arr[mid]) {
                return insertValueSearch(arr, key, low, mid - 1);
            } else if (key > arr[mid]) {
                return insertValueSearch(arr, key, mid + 1, high);
            } else {
                return mid;
            }
        }
    }
    

    3.斐波那契查找(Fibonacci Search)

    public class FibonacciSearch {
        private static final int size = 20;
    
        public static void main(String[] args) {
            int[] arr = {-4, -1, 0, 1, 2, 4, 5, 6, 7, 10};
            System.out.println(fibonacciSearch(arr, -4));
        }
    
        public static int fibonacciSearch(int[] arr, int key) {
            int len = arr.length;
            int low = 0;
            int mid = 0;
            int high = len - 1;
            int n = 0;
            int[] f = getFib();
            //找到等于或刚刚大于high的斐波那契值
            while (len > f[n] - 1) {
                n++;
            }
            //创建一个长度为f[n]-1的临时数组,超出arr长度的部分用最后一个元素补齐
            int[] temp = Arrays.copyOf(arr, f[n] - 1);
            for (int i = high + 1; i < temp.length; i++) {
                temp[i] = arr[high];
            }
            System.out.println(Arrays.toString(temp));
            while (low <= high) {
                //mid = low + f[n - 1] - 1
                mid = low + f[n - 1] - 1;
                //f[n] = f[n - 1] + f[n - 2]
                //总 = 前 + 后
                if (key < temp[mid]) {
                    high = mid - 1;
                    n -= 1;
                } else if (key > temp[mid]) {
                    low = mid + 1;
                    n -= 2;
                } else {
                    if (mid <= high) {
                        return mid;
                    } else {
                        return high;
                    }
                }
            }
            return -1;
        }
    
        public static int[] getFib() {
            int[] f = new int[size];
            f[0] = 1;
            f[1] = 1;
            for (int i = 2; i < size; i++) {
                f[i] = f[i - 1] + f[i - 2];
            }
            return f;
        }
    }
    
  • 相关阅读:
    2016012056+小学四则运算练习软件项目报告
    《构建之法》1,2,16章读后感
    我与软件
    散列函数的应用及其安全性
    EGener2四则运算出题器
    用jar包运行带GUI的java游戏
    关于《构建之法》第四章和第十七章的问题
    2016012070小学四则运算练习软件项目报告
    有关软件工程的一些问题
    300道随机四则运算小程序(java编写)
  • 原文地址:https://www.cnblogs.com/songjilong/p/12236627.html
Copyright © 2011-2022 走看看